\qquad

Chapter 1

Use the figure for Exercises 1-4.

1. What is another name for plane P ?
A plane $A E$
C plane BAD
B plane A
D plane BAC
2. Which segment is on line n ?
F $\overline{A D}$
$\mathrm{H} \overline{A C}$
$\mathrm{G} \overline{B C}$
J $\overline{B E}$
3. Which is the name of a ray with endpoint A ?
A $\overrightarrow{D A}$
C $\overrightarrow{C A}$
B $\overrightarrow{B C}$
D $\overrightarrow{A B}$
4. Name the intersection of plane P and line m.
F line n
H $A C$
G point A
J $\overline{A E}$
5. What is the measure of $\overline{R T}$?

A 5
C 26
B 16
D 40
6. Given $L M=M P$ and L, M, and P are collinear, which of the following BEST describes the relationship of L, M, and P ?
F $\overline{L M} \cong \overline{M P}$
G M is the midpoint of $\overline{L P}$.
H M bisects $\overline{L P}$.
J All of the above

Use the figure for Exercises 7 and 8.

7. Which term describes $\angle P M Q$?
A obtuse
C right
B straight
D acute
8. What is $\mathrm{m} \angle P M N$?
F 22°
H 68°
G 90°
J 112°
9. Which angles are adjacent and form a linear pair?

A $\angle 1$ and $\angle 2$
C $\angle 2$ and $\angle 3$
B $\angle 3$ and $\angle 4$
D $\angle 1$ and $\angle 5$
10. If $\mathrm{m} \angle A=(4 x+2)^{\circ}$, what is the measure of the complement of $\angle A$?
F 90°
H $(178-4 x)^{\circ}$
G $(4 x+92)^{\circ}$
$\mathrm{J}(88-4 x)^{\circ}$
11. If $\mathrm{m} \angle B=(3 x-16)^{\circ}$, what is the measure of the supplement of $\angle B$?
A 180°
C $(164-3 x)^{\circ}$
B $(196-3 x)^{\circ}$
D $(16-3 x)^{\circ}$
12. What is the perimeter of a square whose side is 8.2 centimeters?
F 16.4 cm
H $32.8 \mathrm{~cm}^{2}$
G 32.8 cm
$J 67.24 \mathrm{~cm}^{2}$
13. What is the area of a triangle with a height of 3 inches and a base of 5.5 inches?
A $8.25 \mathrm{in}^{2}$
C 16.5 in .
B $8.5 \mathrm{in}^{2}$
D $16.5 \mathrm{in}^{2}$
14. A circle has a diameter of 8 feet. What is its approximate area?
F $12.56 \mathrm{ft}^{2}$
H $50.24 \mathrm{ft}^{2}$
G $25.12 \mathrm{ft}^{2}$
J $200.96 \mathrm{ft}^{2}$
15. Given $\overline{G H}$ with endpoints $G(-11,4)$ and $H(-1,-9)$, what are the coordinates of the midpoint of $\overline{G H}$?
A $(-12,-5)$
C $(-10,13)$
B ($-6,-2.5$)
D $(-5,6.5)$
16. M is the midpoint of $\overline{R S}$. R has coordinates ($-12,4$), and M has coordinates (1, -2). What are the coordinates of S ?
F ($-5.5,-1$)
H $(13,6)$
G(-11, 2)
J (14, -8)
17. What is the distance from $M(-1,6)$ to $N(11,1)$?
A 12 units
C 13 units
B $\sqrt{149}$ units
D 169 units
18. What is the distance from V to W ?

F 17 cm
H 120 cm
G 23 cm
J 289 cm
19. What transformation is shown?

20. Given a point in the coordinate plane, the rule $(x, y) \rightarrow(x+2, y-3)$ translates the point in which direction?
F 2 units to the left and 3 units up
G 3 units to the left and 2 units down
H 3 units right and 2 units up
$J 2$ units to the right and 3 units down

Chapter 2

1.What is the next item in the pattern?

$$
-1,2,-4,8, \ldots
$$

A -16
C 4
B -4
D 16
2. Which is a counterexample that shows that the following conjecture is false: "If $\angle 1$ and $\angle 2$ are supplementary, then one of the angles is obtuse"?

F $\mathrm{m} \angle 1=45^{\circ}$ and $\mathrm{m} \angle 2=45^{\circ}$
G $\mathrm{m} \angle 1=53^{\circ}$ and $\mathrm{m} \angle 2=127^{\circ}$
$\mathrm{H} \mathrm{m} \angle 1=90^{\circ}$ and $\mathrm{m} \angle 2=90^{\circ}$
$\mathrm{J} \mathrm{m} \angle 1=100^{\circ}$ and $\mathrm{m} \angle 2=80^{\circ}$
3. removed
4. Given the conditional statement "If it is January, then it is winter in the United States," which is true?

F the converse of the conditional
G the inverse of the conditional
H the contrapositive of the conditional
J Not here
5. What is the inverse of the conditional statement "If a number is divisible by 6 , then it is divisible by 3 "?
A If a number is divisible by 3 , then it is divisible by 6 .
B If a number is not divisible by 6 , then it is not divisible by 3 .
C If a number is not divisible by 3 , then it is not divisible by 6 .

D If a number is not divisible by 6 , then it is divisible by 3 .
6. removed
7. removed
8. Which is a biconditional statement of the conditional statement "If $x^{3}=-1$, then $x=-1$ "?

F If $x=-1$, then $x^{3}=-1$.
$\mathrm{G} x^{3}=-1$ if $x=-1$.
H $x^{3}=-1$ if and only if $x=-1$.
$\mathrm{J} x=-1 \rightarrow x^{3}=-1$.
9. Which property is NOT used when solving $15=2 x-1$?

A Reflex. Prop. of $=$
B Add. Prop. of =
C Div. Prop. of $=$
D Sym. Prop. of $=$
10. Identify the property that justifies the statement "If $\angle B \cong \angle A$, then $\angle A \cong \angle B$."

F Sym. Prop. of $=$
G Reflex. Prop. of $=$
H Trans. Prop. of \cong
J Sym. Prop. of \cong

Use the partially completed two-column proof for Exercises 11 and 12.
Given: $\mathrm{m} \angle 1=30^{\circ}$ and $\mathrm{m} \angle 2=2 \mathrm{~m} \angle 1$.
Prove: $\angle 1$ and $\angle 2$ are complementary.
Proof:

Statements	Reasons
1. $\mathrm{m} \angle 1=30^{\circ}$, $\mathrm{m} \angle 2=2 \mathrm{~m} \angle 1$	1. Given
2. $\quad ?$	2. ? ?
3. ? ?	3. ? ?
4. \quad ?	4. ?
5. ? \quad 5. Simplify.	
6. $\angle 1$ and $\angle 2$ are complementary.	6. Def. of comp. s

11. Each of the items listed below belongs in one of the blanks in the Statements column. Which belongs in Step 4?
A $\mathrm{m} \angle 2=2\left(30^{\circ}\right)$
B $\mathrm{m} \angle 1+\mathrm{m} \angle 2=90^{\circ}$
C $\mathrm{m} \angle 1+\mathrm{m} \angle 2=30^{\circ}+60^{\circ}$
D $m \angle 2=60^{\circ}$
12. Which is the justification for Step 2?

F Add. Prop. of $=$
G Simplify.
H Subst.
$\mathrm{J} \angle$ Add. Post.

Use the partially completed two-column and flowchart proofs for Exercises 13 and 14.
Given: $\angle 2 \cong \angle 3$, and $\angle 1$ and $\angle 2$ are adjacent angles whose noncommon sides form a straight line.
Prove: $\angle 1$ and $\angle 3$ are supplementary. Two-Column Proof:

Statements	Reasons
1. $\angle 2 \cong \angle 3$	1. Given
2. $\mathrm{m} \angle 2=\mathrm{m} \angle 3$	2. Def. of $\cong \triangle s$
3. $\angle 1$ and $\angle 2$ are supplementary.	3. ? ?
4. $\mathrm{m} \angle 1+\mathrm{m} \angle 2=180^{\circ}$	4. Def. of supp. $\angle \mathrm{s}$
5. $\mathrm{m} \angle 1+\mathrm{m} \angle 3=180^{\circ}$	5. ? ?
6. $\angle 1$ and $\angle 3$ are supplementary.	6. Def. of supp. $\angle s$

Flowchart Proof:

13. In the flowchart proof, which belongs in the last blank box?

A $\mathrm{m} \angle 1+\mathrm{m} \angle 2=180^{\circ}$
B Def. of supp. ${ }^{\circ}$
C $\mathrm{m} \angle 1+\mathrm{m} \angle 3=180^{\circ}$
D Subst.
14. In the flowchart proof, which theorem justifies the statement " $\angle 1$ and $\angle 2$ are supplementary"?

F Linear Pair Theorem
G Congruent Supplements Theorem
H Right Angle Congruence Theorem
J Congruent Complements Theorem

Chapter 3

Use the figure for Exercises 1 and 2.

1. Classify $\overline{E H}$ and $\overline{D H}$.

A skew segments
B parallel segments
C perpendicular segments
D parallel planes
2. How many segments are skew to $\overline{A E}$?
F 1
H 3
G 2
J 4

Use the figure for Exercises 3 and 4.

3. Which are alternate exterior angles?
A $\angle 1$ and $\angle 3$
C $\angle 3$ and $\angle 6$
B $\angle 1$ and $\angle 8$
D $\angle 6$ and $\angle 7$
4. Which statement is true?
$\mathrm{F} \angle 1$ and $\angle 2$ are alternate interior angles.
G $\angle 1$ and $\angle 3$ are corresponding angles.
$\mathrm{H} \angle 3$ and $\angle 6$ are alternate exterior angles.
$\mathrm{J} \angle 3$ and $\angle 7$ are same-side interior angles.
5. Which correctly completes the sentence? If two parallel lines are cut by a transversal, then the two pairs of same-side interior angles are \qquad .
A supplementary
B complementary
C corresponding
D congruent
6. What type of angle is $\angle 1$?

F acute
H obtuse
G right
J straight
7. Given $\overparen{R S} \| \overrightarrow{Q P}$, what is the value of x ?

A 6
C 72
B 9
D 108

Use the figure for Exercises 8 and 9.

8. Which information proves that $r \| s$?
F $\angle 1 \cong \angle 3$
$\mathrm{H} \angle 4 \cong \angle 6$
$\mathrm{G} \angle 4 \cong \angle 5$
J $\angle 5 \cong \angle 6$
9. If $\mathrm{m} \angle 3=(4 x+20)^{\circ}$ and $\mathrm{m} \angle 5=(6 x+10)^{\circ}$, what value of x proves that $r \| s$?
A 5
C 40
B 15
D 100
10. If a transversal is perpendicular to one of two parallel lines, how many different angle measures are formed?
F 1
H 4
G 3
J 8
11. Which is a possible value of x ?

A -2
C 3
B 1
D 4
12. Given: $\overrightarrow{A B} \| \overrightarrow{C D}$. E is on $\overrightarrow{A B}$, and F is on $\overrightarrow{C D} . \overrightarrow{E F}$ is the perpendicular bisector of
$\overline{C D}$. What is the shortest segment from E to $\overrightarrow{C D}$?
F $\overline{A F}$
H $\overline{E F}$
$\mathrm{G} \overline{E C}$
$J \overline{E C}$
13. Which justifies Step 3?

Given: $s \perp q$ and $\angle 1 \cong \angle 2$.
Prove: $s \perp p$
Proof:

Statements	Reasons	
1. $\angle 1 \cong \angle 2, s \perp q$	1. Given	
2. $p \\| q$	2. \quad ?	
$3 . s \perp p$	3. $\quad ?$	

A \perp Transv. Thm.
B $p \| r$
C Conv. of Alt. Int. Is Thm.
D 2 lines \perp to same line $\rightarrow 2$ lines \||

Chapter 4
1.Classify the triangle.

A isosceles acute
B isosceles obtuse
C scalene acute
D scalene obtuse

Use the figure for Exercises 2 and 3.

2. Which is NOT a correct classification for the triangle?

F acute	H isosceles
G equiangular	J scalene

3. What is the length of side $\overline{B C}$?
A 3
C 10
B 8
D 24

Use the figure for Exercises 4 and 5.

4. What is $\mathrm{m} \angle K L M$?
F 3
H 42
G 22
J 64
5. What is $\mathrm{m} \angle M$?
A 0.2
C 26
B 4
D 64
6. What is the $\mathrm{m} \angle \mathrm{U}$?

F 5
H 40
G 15
J 120
7. Two congruent triangles have the following corresponding parts:
$\overline{R S} \cong \overline{U V}, \overline{R T} \cong \overline{U W}$, and $\angle R \cong \angle U$.
Which is NOT necessarily a correct congruence statement?

A $\triangle R S T \cong \triangle U V W$
B $\triangle S T R \cong \triangle V W U$
C $\triangle T R S \cong \triangle V W U$
D $\triangle T R S \cong \triangle W U V$
8. $\triangle K L M \cong \triangle R S T . \mathrm{m} \angle L=(3 x+15)^{\circ}$ and $\mathrm{m} \angle S=(6 x+3)^{\circ}$. What is the value of x ?
F 2
H 6
G 4
J 27

Use the figure for Exercises 9-12.

9. If $A D=5 y+7$ and $B C=7 y-3$, what must the value of y be to prove $\triangle A E D \cong \triangle C E B$ by the SSS Postulate?
A 2
C 17
B 5
D 32
10. What postulate or theorem justifies the congruence statement $\triangle A B E \cong \triangle C D E$?
F SSS
H ASA
G SAS
J AAS
11. If $\angle B$ and $\angle C$ are right angles, what additional congruence statement would allow you to prove $\triangle D C B \cong \triangle A B C$ by the ASA postulate?

A $\angle D B C \cong \angle A C B$
B $\angle B D C \cong \angle C A B$
C $\overline{A B} \cong \overline{D C}$
D $\overline{A C} \cong \overline{D B}$
12. If $\angle A$ and $\angle C$ are right angles and $\overline{A D} \cong \overline{B C}$, what postulate or theorem justifies the congruence statement $\triangle B C D$ $\cong \triangle D A B$?
F SAS
H AAS
G ASA
J HL
13. removed
14. removed
15. What is the value of x ?

A 12
C 18
B 19.5
D 60

Use the partially completed two-column proof for Exercises 16-18.

Given: $\overline{G J}$ bisects $\angle F G H, \overline{F G} \cong \overline{H G}$

Prove: $\overline{F J} \cong \overline{H J}$
Proof:

Statements	Reasons
1. $\overline{G J J}$ bisects $\angle F G H$.	1. Given
2. $\angle F G J \cong \angle H G J$	2. Def. of \angle bisector
3. $\overline{F G} \cong \overline{H G}$	3. Given
4. $\angle F \cong \angle H$	4. ?
5. $\triangle F G J \cong \triangle H G J$	5. ?
6. $\overline{F J} \cong \overline{H J}$	6. ?

16. Which reason belongs in Step 4?
F Isosc. \triangle Thm.
G Conv. of Isosc. \triangle Thm.
H ASA
J Def. of \angle bisector
17. Which reason belongs in Step 5 ?
A Isosc. \triangle Thm. C CPCTC
B ASA
D HL
18. Which reason belongs in Step 6 ?

F Isosc. \triangle Thm.
G ASA
H CPCTC
J Def. of \angle bisector

Chapter 5

1. $\overline{B X}$ is the perpendicular bisector of $\overline{A C}$. What is the value of n ?

A 0
C 4
B $\frac{1}{4}$
D Not here
2. Which point is on the perpendicular bisector of the segment with endpoints $(-2,5)$ and ($-2,-3$)?

$$
\begin{array}{ll}
F(-2,8) & H(-2,1) \\
G(-2,4) & J(1,-2)
\end{array}
$$

3. What information is sufficient to allow you to conclude that Y is on the bisector of $\angle E$?

A $\mathrm{m} \angle 1=90^{\circ}$
B $\mathrm{m} \angle 2=90^{\circ}$
C $\mathrm{m} \angle 1=90^{\circ}$ and $\mathrm{m} \angle 2=90^{\circ}$
D $\mathrm{m} \angle F Y E+\mathrm{m} \angle D Y E=90^{\circ}$
4. Point Z is the circumcenter of $\triangle T U V$. What is the value of $U V$?

F 33.75
H 50
G 45
J Not here
5. What is the distance from X to $\overline{O N}$?

A 8
C 11
B 12.8
D 12
6. If $W X=3.6, W L=6.1$, and $K W=8$, what is the value of $Z W$?

F 3.05
H 4
G 3.6
J 4.06
7. Which is the orthocenter of a triangle with vertices $(-2,1),(3,4)$, and $(3,-4)$?
A $(0,1)$
C $(6,1)$
B $(1,0)$
D $(8,1)$
8. $\overline{S Q}$ is a midsegment of $\triangle N O P$. What is the length of $\overline{O P}$?

F 5
H 23
G 14
J 46
9. $\triangle T U V$ is the midsegment triangle of $\triangle A B C$. Which angle does NOT necessarily measure 40° ?

A $\angle V T U$
C $\angle C T V$
B $\angle T U A$
D $\angle V B U$
10. removed
11. The lengths of two sides of a triangle are 7 and 11. Which could NOT be the length of the third side?
A 5
C 12
B 10
D 19
12. Which statement is false?

F $\triangle K L M$ is scalene.
$\mathrm{G} M L+K M>K L$
$\mathrm{H} \mathrm{m} \angle L<\mathrm{m} \angle K$
$J K M>M L$
13. Which best describes the range of values for x ?

A $0<x<7$
C $x<15$
B $0<x<15$
D $6<x<7$
14. What is the value of x in simplest radical form?

F $3 \sqrt{12}$
H $\sqrt{72}$
G $6 \sqrt{2}$
J $\sqrt{89}$
15. Which numbers form a Pythagorean triple?
A 3, 4, 6
C 9, 12, 15
B $7,6 \sqrt{2}, 11$
D 8, 15, 18
16. Which side length will form an obtuse triangle with sides of length 8 and 10?
F 6
H 12
G 9
J 13
17. What is the value of x in simplest radical form?

A 2.5
C $\frac{5 \sqrt{2}}{2}$
B $\frac{5}{\sqrt{2}}$
D $5 \sqrt{2}$
18. Which is a correct set of values?

F $x=27, y=9 \sqrt{3}, z=18 \sqrt{3}$
G $x=27, y=18 \sqrt{3}, z=9 \sqrt{3}$
H $x=9 \sqrt{3}, y=27, z=18 \sqrt{3}$
J $x=18 \sqrt{3}, y=9 \sqrt{3}, z=27$

Chapter 6

1. Which term does NOT describe the figure?

A concave
C polygon
B hexagon
D regular
2. What is the sum of the measures of the interior angles of a 5 -sided convex polygon?
A 72
C 540
B 360
D 900
3. What is the value of a ?

A 60
B 80
4. The diagonals of $\sqcup A B C D$ intersect at X. Which is NOT true?
$\mathrm{A} \angle D A B \cong \angle B C D$
B $\mathrm{m} \angle D A B+\mathrm{m} \angle C B A=180^{\circ}$
C $\overline{B C} \cong \overline{A D}$
D $\overline{A X} \cong \overline{X B}$

Use the figure for Exercises 5 and 6.

5. $W X Y Z$ is a parallelogram. Which is $\mathrm{m} \angle W$?
A 68°
B 112°
6. $W X Y Z$ is a parallelogram. What is the value of x ?

A 7
B 10
7. Which MUST be a parallelogram?

Figure 1

Figure 2

A Figure 1
B Figure 2
8. If $\overline{E F} \| \overline{G H}$, what additional information would allow you to conclude that $E F G H$ is a parallelogram?

A $\overline{E F} \cong \overline{G H}$
B $\overline{F G} \cong \overline{E H}$
9. Which is NOT always true?

A A square is a rhombus.
$B A$ rectangle is a parallelogram.
C A rhombus is a rectangle.
D A square is a rectangle.
10. $P Q R S$ is a rectangle. $P R=26$. What is the value of x ?

A 6.5
B 13
11. $J K L M$ is a rhombus. If $\mathrm{m} \angle J M L=70^{\circ}$, what is the value of $\mathrm{m} \angle J K M$?

A 35°
B 55°
C 70°
D 110°
12. removed
13. removed
14. Which best describes the figure?

A kite
B parallelogram
C quadrilateral
D trapezoid
15. What is $\mathrm{m} \angle F$ in the isosceles trapezoid?

A 79°
B 101°
16. In trapezoid $P Q R S$, what is the length of midsegment $\overline{X Y}$?

A 48 cm
B 51 cm

