Geometry XL Challenge Exam Review B

Name _____

Chapter 1

- Given LM = MP and L, M, and P are collinear, which of the following BEST describes the relationship of L, M, and P?
 - $F \overline{LM} \cong \overline{MP}$
 - G *M* is the midpoint of \overline{LP} .
 - H *M* bisects \overline{LP} .
 - J All of the above

Use the figure for Exercises 7 and 8.

- 7. Which term describes ∠PMQ?
 A obtuse
 C right
 - B straight D acute
- 8. What is m $\angle PMN$?

F	22°	Н	68°
G	90°	J	112°

9. Which angles are adjacent and form a linear pair?

10. If $m \angle A = (4x + 2)^\circ$, what is the measure of the complement of $\angle A$?

F 90°	H (178 – 4 <i>x</i>)°
G (4 <i>x</i> + 92)°	J (88 – 4 <i>x</i>)°

11. If $m \angle B = (3x - 16)^\circ$, what is the measure of the supplement of $\angle B$?

A 180°	C (164 – 3 <i>x</i>)°
B (196 − 3 <i>x</i>)°	D (16 – 3 <i>x</i>)°

12. What is the perimeter of a square whose side is 8.2 centimeters?

F 16.4 cm	H 32.8 cm ²
G 32.8 cm	J 67.24 cm ²

13. What is the area of a triangle with a height of 3 inches and a base of 5.5 inches?

A 8.25 in ²	C 16.5 in.
B 8.5 in ²	D 16.5 in ²

14. A circle has a diameter of 8 feet. What is its approximate area?

F 12.56 ft ²	H 50.24 ft ²
G 25.12 ft ²	J 200.96 ft ²

15. Given \overline{GH} with endpoints G(-11, 4) and H(-1, -9), what are the coordinates of the midpoint of \overline{GH} ?

A (-12, -5)	C (–10, 13)
B (-6, -2.5)	D (-5, 6.5)

16. *M* is the midpoint of \overline{RS} . *R* has coordinates (-12, 4), and *M* has coordinates (1, -2). What are the coordinates of *S*?

F (-5.5, -1)	H (13, 6)
G (–11, 2)	J (14, –8)

- 17. What is the distance from *M*(-1, 6) to *N*(11, 1)?
 - A 12 units C 13 units
 - B $\sqrt{149}$ units D 169 units

19. What transformation is shown?

- 20. Given a point in the coordinate plane, the rule $(x, y) \rightarrow (x+2, y-3)$ translates the point in which direction?
 - F 2 units to the left and 3 units up
 - G 3 units to the left and 2 units down
 - H 3 units right and 2 units up
 - J 2 units to the right and 3 units down

1.What is the next item in the pattern?

-1, 2, -4, 8, . . .

A –16	C 4
B -4	D 16

- Which is a counterexample that shows that the following conjecture is false: "If ∠1 and ∠2 are supplementary, then one of the angles is obtuse"?
 - F m $\angle 1 = 45^{\circ}$ and m $\angle 2 = 45^{\circ}$

 - H m $\angle 1 = 90^{\circ}$ and m $\angle 2 = 90^{\circ}$
 - J m $\angle 1$ = 100° and m $\angle 2$ = 80°
- 3. removed
- 4. Given the conditional statement "If it is January, then it is winter in the United States," which is true?
 - F the converse of the conditional
 - G the inverse of the conditional
 - H the contrapositive of the conditional
 - J Not here
- 5. What is the inverse of the conditional statement "If a number is divisible by 6, then it is divisible by 3"?
 - A If a number is divisible by 3, then it is divisible by 6.
 - B If a number is not divisible by 6, then it is not divisible by 3.
 - C If a number is not divisible by 3, then it is not divisible by 6.
 - D If a number is not divisible by 6, then it is divisible by 3.

- 6. removed
- 7. removed
- 8. Which is a biconditional statement of the conditional statement "If $x^3 = -1$, then x = -1"?
 - F If x = -1, then $x^3 = -1$.
 - G $x^3 = -1$ if x = -1.
 - H $x^3 = -1$ if and only if x = -1.
 - $J \ x = -1 \rightarrow x^3 = -1.$
- 9. Which property is NOT used when solving 15 = 2x 1?
 - A Reflex. Prop. of =
 - B Add. Prop. of =
 - C Div. Prop. of =
 - D Sym. Prop. of =
- 10. Identify the property that justifies the statement "If $\angle B \cong \angle A$, then $\angle A \cong \angle B$."
 - F Sym. Prop. of =
 - G Reflex. Prop. of =
 - H Trans. Prop. of \cong
 - J Sym. Prop. of \cong

Use the partially completed two-column proof for Exercises 11 and 12.

Given: $m \angle 1 = 30^{\circ}$ and $m \angle 2 = 2m \angle 1$. **Prove:** $\angle 1$ and $\angle 2$ are complementary. **Proof:**

Statements	Reasons
1. m∠1 = 30°, m∠2 = 2m∠1	1. Given
2	2
3	3
4	4
5	5. Simplify.
6. ∠1 and ∠2 are complementary.	6. Def. of comp. 🖄

- 11. Each of the items listed below belongs in one of the blanks in the Statements column. Which belongs in Step 4?
 - A m $\angle 2 = 2(30^{\circ})$
 - $B m \angle 1 + m \angle 2 = 90^{\circ}$
 - $C m \angle 1 + m \angle 2 = 30^\circ + 60^\circ$
 - $D m \angle 2 = 60^{\circ}$
- 12. Which is the justification for Step 2?
 - F Add. Prop. of =
 - G Simplify.
 - H Subst.
 - $\mathsf{J} \ \angle \ \mathsf{Add.} \ \mathsf{Post.}$

Use the partially completed two-column and flowchart proofs for Exercises 13 and 14.

Given: $\angle 2 \cong \angle 3$, and $\angle 1$ and $\angle 2$ are adjacent angles whose noncommon sides form a straight line.

Prove:	∠1	and	∠3	are	supplementary.	

Two-Column Proof:

Statements	Reasons
1. ∠2 ≅ ∠3	1. Given
2. m∠2 = m∠3	2. Def. of $\cong \measuredangle$
 ∠1 and ∠2 are supplementary. 	3
4. m $\angle 1 + m \angle 2 = 180^{\circ}$	4. Def. of supp. ⊿
5. m∠1 + m∠3 = 180°	5. <u>?</u>
 ∠1 and ∠3 are supplementary. 	6. Def. of supp. ∡

Flowchart Proof:

- 13. In the flowchart proof, which belongs in the last blank box?
 - A $m \angle 1 + m \angle 2 = 180^{\circ}$
 - B Def. of supp. 🖄
 - $C m \angle 1 + m \angle 3 = 180^{\circ}$
 - D Subst.
- 14. In the flowchart proof, which theorem justifies the statement "∠1 and ∠2 are supplementary"?
 - F Linear Pair Theorem
 - G Congruent Supplements Theorem
 - H Right Angle Congruence Theorem
 - J Congruent Complements Theorem

Use the figure for Exercises 1 and 2.

- 1. Classify \overline{EH} and \overline{DH} .
 - A skew segments
 - B parallel segments
 - C perpendicular segments
 - D parallel planes
- 2. How many segments are skew to \overline{AE} ?

F 1	l	Н	3
G 2	2	J	4

Use the figure for Exercises 3 and 4.

- 3. Which are alternate exterior angles?
 - A $\angle 1$ and $\angle 3$ C $\angle 3$ and $\angle 6$
 - $\mathsf{B} \ \angle 1 \ \text{and} \ \angle 8 \qquad \mathsf{D} \ \angle 6 \ \text{and} \ \angle 7$
- 4. Which statement is true?
 - F $\angle 1$ and $\angle 2$ are alternate interior angles.
 - G $\angle 1$ and $\angle 3$ are corresponding angles.
 - H \angle 3 and \angle 6 are alternate exterior angles.
 - J \angle 3 and \angle 7 are same-side interior angles.
- Which correctly completes the sentence? If two parallel lines are cut by a transversal, then the two pairs of same-side interior angles are _____.

A supplementary

- B complementary
- C corresponding
- D congruent

6. What type of angle is $\angle 1$?

G right

- J straight
- 7. Given $\overrightarrow{RS} \parallel \overrightarrow{QP}$, what is the value of x?

Use the figure for Exercises 8 and 9.

8. Which information proves that $r \parallel s$?

$F \ \angle 1 \cong \angle 3$	H ∠4 ≅ ∠6
G ∠4 ≅ ∠5	J ∠5 ≅ ∠6

9. If $m \angle 3 = (4x + 20)^\circ$ and $m \angle 5 = (6x + 10)^\circ$, what value of x proves that $r \parallel s$?

A 5	C 40
B 15	D 100

10. If a transversal is perpendicular to one of two parallel lines, how many different angle measures are formed?

F 1	H 4
G 3	J 8

11. Which is a possible value of x?

- 12. Given: $\overrightarrow{AB} || \overrightarrow{CD}$. *E* is on \overrightarrow{AB} , and *F* is on \overrightarrow{CD} . \overrightarrow{EF} is the perpendicular bisector of
 - \overrightarrow{CD} . What is the shortest segment from *E* to \overrightarrow{CD} ?

13. Which justifies Step 3?

Given: $s \perp q$ and $\angle 1 \cong \angle 2$.

Prove: $s \perp p$

Proof:

Statements	Reasons
1. ∠1 ≅ ∠2, s⊥ q	1. Given
2. p q	2?
3. s⊥ <i>p</i>	3

- A \perp Transv. Thm.
- B $p \parallel r$
- C Conv. of Alt. Int. /s Thm.
- D 2 lines \perp to same line \rightarrow 2 lines ||

Chapter 4

1.Classify the triangle. $\sqrt{85^{\circ}}$

- A isosceles acute
- B isosceles obtuse
- C scalene acute
- D scalene obtuse

Use the figure for Exercises 2 and 3.

2. Which is NOT a correct classification for the triangle?

H isosceles

F acute	
---------	--

- G equiangular J scalene
- 3. What is the length of side \overline{BC} ?

A 3	C 10
B 8	D 24

Use the figure for Exercises 4 and 5.

4. What is $m \angle KLM$?

F 3	H 42
G 22	J 64

5. What is m $\angle M$?

A 0.2	C 26
B 4	D 64

- 6. What is the m $\angle U$? (7x + 15)° T(8x)° WF 5 H 40 G 15 J 120
- 7. Two congruent triangles have the following corresponding parts: $\overline{RS} \cong \overline{UV}, \overline{RT} \cong \overline{UW}$, and $\angle R \cong \angle U$. Which is NOT necessarily a correct congruence statement?
 - $\mathsf{A} \ \triangle RST \cong \triangle UVW$
 - $\mathsf{B} \bigtriangleup \mathsf{STR} \cong \bigtriangleup \mathsf{VWU}$
 - $\mathsf{C} \ \triangle TRS \cong \triangle VWU$

$$\mathsf{D} \ \triangle TRS \cong \triangle WUV$$

8. $\triangle KLM \cong \triangle RST$. m $\angle L = (3x + 15)^{\circ}$ and m $\angle S = (6x + 3)^{\circ}$. What is the value of *x*?

F 2	H 6
G 4	J 27

Use the figure for Exercises 9–12.

9. If AD = 5y + 7 and BC = 7y - 3, what must the value of y be to prove $\triangle AED \cong \triangle CEB$ by the SSS Postulate?

A 2	C 17
B 5	D 32

10. What postulate or theorem justifies the congruence statement $\triangle ABE \cong \triangle CDE$?

F SSS	H ASA
G SAS	L AAS

- 11. If $\angle B$ and $\angle C$ are right angles, what additional congruence statement would allow you to prove $\triangle DCB \cong \triangle ABC$ by the ASA postulate?
 - $A \ \angle DBC \cong \angle ACB$
 - $\mathsf{B} \ \angle \mathsf{BDC} \cong \angle \mathsf{CAB}$
 - $\mathsf{C} \ \overline{AB} \cong \overline{DC}$
 - $\mathsf{D} \ \overline{\mathsf{AC}} \cong \overline{\mathsf{DB}}$
- 12. If $\angle A$ and $\angle C$ are right angles and $\overrightarrow{AD} \cong \overrightarrow{BC}$, what postulate or theorem justifies the congruence statement $\triangle BCD \cong \triangle DAB$?
 - F SAS H AAS G ASA J HL
- 13. removed
- 14. removed
- 15. What is the value of x?

Use the partially completed two-column proof for Exercises 16–18.

Given:
$$\overline{GJ}$$
 bisects $\angle FGH$, $\overline{FG} \cong \overline{HG}$

Prove:
$$\overline{FJ} \cong \overline{HJ}$$

Proof:

Statements	Reasons
1. \overline{GJ} bisects $\angle FGH$.	1. Given
2. ∠FGJ≅ ∠HGJ	2. Def. of \angle bisector
3. FG ≅ HG	3. Given
4. ∠ <i>F</i> ≅ ∠ <i>H</i>	4?
5. ∆ <i>F</i> GJ ≅ ∆HGJ	5
6. $\overline{FJ} \cong \overline{HJ}$	6

^{16.} Which reason belongs in Step 4?

F Isosc. riangle Thm.

- G Conv. of Isosc. riangle Thm.
- H ASA

J Def. of \angle bisector

17. Which reason belongs in Step 5? A Isosc. \triangle Thm. C CPCTC

B ASA D HL

- 18. Which reason belongs in Step 6?
 - F Isosc. riangle Thm.
 - G ASA
 - H CPCTC
 - J Def. of \angle bisector

1. \overline{BX} is the perpendicular bisector of \overline{AC} . What is the value of *n*?

- Which point is on the perpendicular bisector of the segment with endpoints (-2, 5) and (-2, -3)?
 - F (-2, 8) H (-2, 1)
 - G (-2, 4) J (1, -2)
- What information is sufficient to allow you to conclude that Y is on the bisector of ∠E?

- A $m \angle 1 = 90^{\circ}$
- B m $\angle 2 = 90^{\circ}$
- C m $\angle 1 = 90^{\circ}$ and m $\angle 2 = 90^{\circ}$
- $D m \angle FYE + m \angle DYE = 90^{\circ}$
- 4. Point *Z* is the circumcenter of $\triangle TUV$. What is the value of *UV*?

5. What is the distance from X to \overline{ON} ?

- B 12.8 D 12
- 6. If *WX* = 3.6, *WL* = 6.1, and *KW* = 8, what is the value of *ZW*?

F 3.05	H 4
G 3.6	J 4.06

7. Which is the orthocenter of a triangle with vertices (-2, 1), (3, 4), and (3, -4)?

A (0, 1)	C (6, 1)
B (1, 0)	D (8, 1)

8. \overline{SQ} is a midsegment of $\triangle NOP$. What is the length of \overline{OP} ?

F 5 H 23 G 14 J 46

 △*TUV* is the midsegment triangle of △*ABC*. Which angle does NOT necessarily measure 40°?

 $B \angle TUA$ $D \angle VBU$

- 10. removed
- 11. The lengths of two sides of a triangle are 7 and 11. Which could NOT be the length of the third side?

A 5	C 12
B 10	D 19

12. Which statement is false?

- F riangle KLM is scalene.
- $G \ \textit{ML} + \textit{KM} > \textit{KL}$
- H m $\angle L < m \angle K$
- J KM > ML
- 13. Which best describes the range of values for *x*?

14. What is the value of *x* in simplest radical form?

15. Which numbers form a Pythagorean triple?

A 3, 4, 6	C 9, 12, 15
B 7, 6√2, 11	D 8, 15, 18

16. Which side length will form an obtuse triangle with sides of length 8 and 10?

F 6	H 12
G 9	J 13

17. What is the value of *x* in simplest radical form?

18. Which is a correct set of values?

A 2.5

B $\frac{5}{\sqrt{2}}$

F x = 27, $y = 9\sqrt{3}$, $z = 18\sqrt{3}$ G x = 27, $y = 18\sqrt{3}$, $z = 9\sqrt{3}$ H $x = 9\sqrt{3}$, y = 27, $z = 18\sqrt{3}$ J $x = 18\sqrt{3}$, $y = 9\sqrt{3}$, z = 27

1. Which term does NOT describe the figure?

- B hexagon D regular
- 2. What is the sum of the measures of the interior angles of a 5-sided convex polygon?

A 72	C 540
B 360	D 900

3. What is the value of a?

- A 60
- B 80
- 4. The diagonals of *ABCD* intersect at *X*. Which is NOT true?
 - $\mathsf{A} \ \angle \mathsf{D} \mathsf{A} \mathsf{B} \cong \angle \mathsf{B} \mathsf{C} \mathsf{D}$
 - $B m \angle DAB + m \angle CBA = 180^{\circ}$
 - $\mathsf{C} \ \overline{\mathit{BC}} \cong \overline{\mathit{AD}}$
 - $\mathsf{D} \ \overline{\mathsf{AX}} \cong \overline{\mathsf{XB}}$

Use the figure for Exercises 5 and 6.

- WXYZ is a parallelogram. Which is m∠W?
 - A 68°
 - B 112°

6. *WXYZ* is a parallelogram. What is the value of *x*?

A 7 B 10

7. Which MUST be a parallelogram?

A Figure 1

- B Figure 2
- 8. If $\overline{EF} || \overline{GH}$, what additional information would allow you to conclude that EFGH is a parallelogram?

- $\mathsf{B} \ \overline{FG} \cong \overline{EH}$
- 9. Which is NOT always true?
 - A A square is a rhombus.
 - B A rectangle is a parallelogram.
 - C A rhombus is a rectangle.
 - D A square is a rectangle.
- 10. PQRS is a rectangle. PR = 26. What is the value of *x*?

11. *JKLM* is a rhombus. If $m \angle JML = 70^{\circ}$, what is the value of $m \angle JKM$?

- A 35°
- B 55°
- $C 70^{\circ}$
- D 110°
- 12. removed
- 13. removed

14. Which best describes the figure?

- A kite
- B parallelogram
- C quadrilateral
- D trapezoid
- 15. What is $m \angle F$ in the isosceles trapezoid?

16. In trapezoid *PQRS*, what is the length of midsegment \overline{XY} ?

