Geometry XL Ms. Doherty Semester 1 Final Exam Review

Name

per.

Chapter 2

1.What is the next item in the pattern?

-1, 2, -4, 8,	multiply by (-2,
A –16	C 4
B –4	D 16

- Which is a counterexample that shows that the following conjecture is false: "If ∠1 and ∠2 are supplementary, then one of the angles is obtuse"?
 - F m ${\sc l} 1=45^\circ$ and m ${\sc l} 2=45^\circ$
 - G m $\angle 1 = 53^{\circ}$ and m $\angle 2 = 127^{\circ}$
 - H m $\angle 1 = 90^{\circ}$ and m $\angle 2 = 90^{\circ}$
 - J m $\angle 1$ = 100° and m $\angle 2$ = 80°
- 3. removed
- 4. Given the conditional statement "If it is January, then it is winter in the United States," which is true?
 - F the converse of the conditional
 - G the inverse of the conditional
 - H the contrapositive of the conditional
 - J Not here
- 5. What is the inverse of the conditional statement "If a number is divisible by 6, then it is divisible by 3"?
 - A If a number is divisible by 3, then it is divisible by 6.
 - B If a number is not divisible by 6, then it is not divisible by 3.
 - C If a number is not divisible by 3, then it is not divisible by 6.
 - D If a number is not divisible by 6, then it is divisible by 3.

- 6. removed
- 7. removed
- 8. Which is a biconditional statement of the conditional statement "If $x^3 = -1$, then x = -1"?

F If x = -1, then $x^3 = -1$. G $x^3 = -1$ if x = -1. H $x^3 = -1$ if and only if x = -1. J $x = -1 \rightarrow x^3 = -1$.

- 9. Which property is NOT used when solving 15 = 2x 1?
 - A Reflex. Prop. of = 2x-1=15 (Sym. Prop. B Add. Prop. of = 2x=16 (Add. Prop. C Div. Prop. of = x=8 (\div Prop.) D Sym. Prop. of =
- 10. Identify the property that justifies the statement "If $\angle B \cong \angle A$, then $\angle A \cong \angle B$."
 - F Sym. Prop. of =
 - G Reflex. Prop. of =
 - H Trans. Prop. of \cong
 - J Sym. Prop. of \cong

Use the partially completed two-column proof for Exercises 11 and 12.

Given: $m \angle 1 = 30^{\circ}$ and $m \angle 2 = 2m \angle 1$. **Prove:** $\angle 1$ and $\angle 2$ are complementary. **Proof:**

Statements	Reasons
1. m∠1 = 30°, m∠2 = 2m∠1	1. Given
2. $m/2 = 2(30^{\circ})$	2. <u>Substitution</u> .
3. <u>ml2 =6</u> 6°	3. <u>Simplify</u>
4. $mL1 + mL2 = 30^{\circ} + 60^{\circ}$	4. <u>Jubstituhion</u>
5. <u>mli+mlz</u> = 90°	5. Simplify.
6. ∠1 and ∠2 are complementary.	6. Def. of comp. 🖄

11. Each of the items listed below belongs in one of the blanks in the Statements column. Which belongs in Step 4?

A
$$m \angle 2 = 2(30^{\circ})$$

B $m \angle 1 + m \angle 2 = 90^{\circ}$
C $m \angle 1 + m \angle 2 = 30^{\circ} + 60^{\circ}$
D $m \angle 2 = 60^{\circ}$

- 12. Which is the justification for Step 2?
 - F Add. Prop. of =
 - G Simplify.
 - H Subst.
 - $J \angle Add.$ Post.

Use the partially completed two-column and flowchart proofs for Exercises 13 and 14.

Given: $\angle 2 \cong \angle 3$, and $\angle 1$ and $\angle 2$ are adjacent angles whose noncommon sides form a straight line.

З

Prove: $\angle 1$ and $\angle 3$ are supplementary. **Two-Column Proof:**

Statements	Reasons
1. ∠2 ≅ ∠3	1. Given
2. m∠2 = m∠3	2. Def. of $\cong \measuredangle$
 ∠1 and ∠2 are supplementary. 	3. <u>Linear Pair</u> Postulate
4. m∠1 + m∠2 = 180°	4. Def. of supp. ∡
5. m∠1 + m∠3 = 180°	5. <u>Substitution</u>
6. ∠1 and ∠3 are supplementary.	6. Def. of supp. ∡

Flowchart Proof:

13. In the flowchart proof, which belongs in the last blank box?

A $m \angle 1 + m \angle 2 = 180^{\circ}$

- B Def. of supp. 🖄
- C m $\angle 1 + m \angle 3 = 180^{\circ}$
- D Subst.
- 14. In the flowchart proof, which theorem justifies the statement "∠1 and ∠2 are supplementary"?
 - F Linear Pair Theorem
 - G Congruent Supplements Theorem
 - H Right Angle Congruence Theorem
 - J Congruent Complements Theorem

6. What type of angle is $\angle 1$?

7. Given $\overrightarrow{RS} \parallel \overrightarrow{QP}$, what is the value of x?

Use the figure for Exercises 8 and 9.

8. Which information proves that *r* || *s*?

F
$$\angle 1 \cong \angle 3$$
H $\angle 4 \cong \angle 6$ G $\angle 4 \cong \angle 5$ J $\angle 5 \cong \angle 6$

23 & 15 are alt. int 9. If $m \angle 3 = (4x + 20)^{\circ}$ and $m \ge 5 = (6x + 10)^\circ$, what value $\frac{L^2 s}{r}$ is they're =) lines are 11. of x proves that $r \parallel s$? 4x+20=6x+10

—		
A 5	C 40	
B 15	D 100	

10. If a transversal is perpendicular to one of two parallel lines, how many different angle measures are formed?

11. Which is a possible value of x?

12. Given: $\overrightarrow{AB} || \overrightarrow{CD}$. *E* is on \overrightarrow{AB} , and *F* is on

 \overrightarrow{CD} . \overrightarrow{EF} is the perpendicular bisector of

 \overline{CD} . What is the shortest segment from *E* to \overline{CD} ?

13. Which justifies Step 3?

Given: $s \perp q$ and $\angle 1 \cong \angle 2$.

Prove: $s \perp p$ **Proof:**

F1001.		
Statements	Reasons	
1. ∠1 ≅ ∠2, $s \perp q$	1. Given	
2. <i>p</i> <i>q</i>	2. Alt.int. L'S. Con	verse
3. <i>s</i> ⊥ <i>p</i>	3.1 Tranvosal 7	hm.

 $A \perp$ Transv. Thm.

- B $p \parallel r$
- C Conv. of Alt. Int. /s Thm.
- D 2 lines \perp to same line \rightarrow 2 lines \parallel

Chapter 4

1.Classify the triangle.

- A isosceles acute
- B isosceles obtuse
- C scalene acute
- D scalene obtuse

Use the figure for Exercises 2 and 3.

- 2. Which is NOT a correct classification for the triangle?
 - F acute
 - G equiangular J scalene

H isosceles

3. What is the length of side \overline{BC} ?

A 3	C 10
B 8	D 24

Use the figure for Exercises 4 and 5.

9. If AD = 5y + 7 and BC = 7y - 3, what must the value of y be to prove $\triangle AED \cong \triangle CEB$ by the SSS Postulate?

C 17	
D 32	

 $AD = B \subset$

54+7=74

10 = 24

10. What postulate or theorem justifies the congruence statement $\triangle ABE \cong \triangle CDE$?

F SSS	H ASA
G SAS	J AAS

A 2

B 5

11. If $\angle B$ and $\angle C$ are right angles, what additional congruence statement would allow you to prove $\triangle DCB \cong \triangle ABC$ by the ASA postulate?

B 19.5 D 60

$$4x+p = 60$$

 $4x = 48$
 $x = 12$

Use the partially completed two-column proof for Exercises 16–18.

Given:
$$\overline{GJ}$$
 bisects $\angle FGH$, $\overline{FG} \cong \overline{HG}$

Prove: $\overline{FJ} \cong \overline{HJ}$

Proof:

Statements	Reasons	
1. \overline{GJ} bisects $\angle FGH$.	1. Given	
2. ∠FGJ≅∠HGJ	2. Def. of \angle bisector	
3. FG ≅ HG	3. Given	
4. ∠ <i>F</i> ≅ ∠ <i>H</i>	4. Base L'S isas. Dom	2
5. ∆ <i>FGJ</i> ≅ ∆ <i>HGJ</i>	5. $ASA \equiv Thm$	
6. $\overline{FJ} \cong \overline{HJ}$	6. CPCTC	

- 16. Which reason belongs in Step 4?
 - F Isosc. \triangle Thm.
 - G Conv. of Isosc. riangle Thm.
 - H ASA
 - J Def. of \angle bisector
- 17. Which reason belongs in Step 5?
 - A Isosc. \triangle Thm. C CPCTC

B ASA D HL

- 18. Which reason belongs in Step 6?
 - F Isosc. riangle Thm.
 - G ASA
 - H CPCTC
 - J Def. of \angle bisector

Chapter 5

1. \overline{BX} is the perpendicular bisector of \overline{AC} . What is the value of *n*?

- Which point is on the perpendicular bisector of the segment with endpoints (-2, 5) and (-2, -3)?
 - F (-2, 8)H (-2, 1) $\begin{pmatrix} -2-2 & 5-3 \\ 2 & 5-2 \end{pmatrix}$ G (-2, 4)J (1, -2) = (-2, 1)
- What information is sufficient to allow you to conclude that *Y* is on the bisector of ∠*E*?

A m $\angle 1 = 90^{\circ}$

- C m $\angle 1 = 90^{\circ}$ and m $\angle 2 = 90^{\circ}$
- D m $\angle FYE + m \angle DYE = 90^{\circ}$
- 4. Point *Z* is the circumcenter of $\triangle TUV$. What is the value of *UV*?

5. What is the distance from *X* to \overline{ON} ?

 $\triangle ABC$. Which angle does NOT radical form? necessarily measure 40°? X H √72 F $3\sqrt{12}$ $G 6\sqrt{2}$ J √89 A ∠VTU ✓ C ∠CTV × B ∠TUA √ 15. Which numbers form a Pythagorean D ∠VBU √ triple? $3^{2}+4^{2}\neq 6^{2}$ 3(3,4,5)10. removed C 9, 12, 15 A 3, 4, 6 👗 11. The lengths of two sides of a triangle are 11-7 1+7, 7 and 11. Which could NOT be the length B 7, $6\sqrt{2}$, 11 K D 8, 15, 18 K $8^{2}+15^{2}\neq 18^{2}$ of the third side? Trut be integer 16. Which side length will form an obtuse sum A 5 1 C 12 triangle with sides of length 8 and 10? B 10 D 19 🗙 RE.D) F 6 6,810 H 12 8, 10, 12 12. Which statement is false? G 9 8,9,10 J 13 8, 10, 13 8°+9° >102=)Acub 17. What is the value of x in simplest radical form? 15°-45°-90° 1:1:12 F \triangle *KLM* is scalene. $G ML + KM > KL \checkmark$ sun 2 smallersides > 3rd ride H m $\angle L <$ m $\angle K \sqrt{}$ J KM > ML × [KM smallest side $5\sqrt{2}$ osite smallost angle) A 2.5 13. Which best describes the range of values for x? B $\frac{5}{\sqrt{2}}$ D $5\sqrt{2}$ 3x - 618. Which is a correct set of values? A(0 > x < 7C x < 15 D 6 < x < 7 B 0 < *x* < 15 1+2=27, 2=27=275=93 32-6>0 3x - 6 < 158 \times F x = 27, y = 9 $\sqrt{3}$, z = 18 $\sqrt{3}$ 37<76 3x < ZI メフ2 えくり G x = 27, $y = 18\sqrt{3}$, $z = 9\sqrt{3}$ H $x=9\sqrt{3}, y=27, z=18\sqrt{3}$ | $y=27, z=\frac{27}{2} \times$ 2<x<7 J $x = 18\sqrt{3}, y = 9\sqrt{3}, z = 27 | z = 27, y = 54 \times 10^{-10}$

14. What is the value of x in simplest

3²= 9² = 81-9 = 72

 $9^{2}+12^{2}=15^{2}$

82+ 102>122 [Auto]

100 > 14 4

164 < 169 =) OBTUSE

X=,

9. $\triangle TUV$ is the midsegment triangle of

11. *JKLM* is a rhombus. If $m \angle JML = 70^{\circ}$, what is the value of $m \angle JKM$?

- A 35° B 55°
- B 55
- C 70°
- D 110°
- 12. removed
- 13. removed

14. Which best describes the figure?

- A kite
- B parallelogram
- C quadrilateral
- D trapezoid
- 15. What is $m \angle F$ in the isosceles trapezoid?

16. In trapezoid *PQRS*, what is the length of midsegment \overline{XY} ?

