Geometry XL
Ms. Doherty
\qquad per. \qquad

Chapter 1

Use the figure for Exercises 1-4.

1. What is another name for plane P ?
A plane $A E$
C plane $B A D$
B plane A
D plane $B A C$
2. Which segment is on line n ?
F $\overline{A D}$
$\mathrm{H} \overline{A C}$
G $\overline{B C}$
」 $\overline{B E}$
3. Which is the name of a ray with endpoint A ?
A $\overrightarrow{D A}$
C $\overrightarrow{C A}$
B $\overrightarrow{B C}$
D $\overrightarrow{A B}$

4. Name the intersection of plane P and line m.
F line n
H $A C$
G point A
J $\overline{A E}$
5. What is the measure of $\overline{R T}$?

A 5
C 26
B 16
D 40

$$
4 x+6+14=8 x
$$

$$
20=4 x
$$

$$
x=5
$$

$R T=8 x=8(5)=40$
6. Given $L M=M P$ and L, M, and P are collinear, which of the following BEST describes the relationship of L, M, and P ?

F $\overline{L M} \cong \overline{M P} \downharpoonleft$

G M is the midpoint of $\overline{L P}$.
H M bisects $\overline{L P}$.
J All of the above
Use the figure for Exercises 7 and 8.

7. Which term describes $\angle P M Q$?
A obtuse
C right
B straight
D acute
8. What is $\mathrm{m} \angle P M N$?
F 22°
G 90°
H 68°
J 112°
$90^{\circ}+22^{\circ}$
$=112^{\circ}$
9. Which angles are adjacent and form a linear pair?

A $\angle 1$ and $\angle 2$
C $\angle 2$ and $\angle 3$
B $\angle 3$ and $\angle 4$
D $\angle 1$ and $\angle 5$
10. If $\mathrm{m} \angle A=(4 x+2)^{\circ}$, what is the measure of the complement of $\angle A$?

$$
\begin{gathered}
\text { F } 90^{\circ} \quad \mathrm{H}(178-4 x)^{\circ} \\
\text { G }(4 x+92)^{\circ} \quad \mathrm{J}(88-4 x)^{\circ} \\
90^{\circ}-(4 x+2)^{\circ} \\
90^{\circ}-4 x-2^{\circ} \\
(88-4 x)^{\circ}
\end{gathered}
$$

$$
180^{\circ}-(3 x-16)=(196-3 x)^{\circ}
$$

11. If $\mathrm{m} \angle B=(3 x-16)^{\circ}$, what is the measure of the supplement of $\angle B$?
A 180°
C $(164-3 x)^{\circ}$
B $(196-3 x)^{\circ}$
D $(16-3 x)^{\circ}$
12. What is the perimeter of a square whose side is 8.2 centimeters?
F 16.4 cm
H $32.8 \mathrm{~cm}^{2}$
G 32.8 cm
$\mathrm{J} 67.24 \mathrm{~cm}^{2}$
$4(8.2)$
13. What is the area of a triangle with a height of 3 inches and a base of 5.5 inches?

$$
0.5(5.5)(3)
$$

A $8.25 \mathrm{in}^{2}$
C 16.5 in .
B $8.5 \mathrm{in}^{2}$
D $16.5 \mathrm{in}^{2}$
14. A circle has a diameter of 8 feet. What is its approximate area? $r=4 \quad A=\pi r^{2}$
F $12.56 \mathrm{ft}^{2}$ $\mathrm{H} 50.24 \mathrm{ft}^{2}=\pi(16)$
G $25.12 \mathrm{ft}^{2}$
J $200.96 \mathrm{ft}^{2}$
15. Given $\overline{G H}$ with endpoints $G(-11,4)$ and $H(-1,-9)$, what are the coordinates of the midpoint of $\overline{G H}$? $\quad\left(\frac{-11-1}{2}, \frac{4-9}{2}\right)$
A $(-12,-5)$
C $(-10,13)$
B $(-6,-2.5)$
D ($-5,6.5$)
16. M is the midpoint of $\overline{R S}$. R has coordinates ($-12,4$), and M has
$\frac{x-12}{2}=1$
$x^{2}=14$ coordinates $(1,-2)$. What are the $R(-12,4)$ coordinates of S ? $\left(\frac{x-12}{2}, \frac{y+4}{2}\right)=(1,-2$
F ($-5.5,-1$)
H $(13,6)$

$$
\frac{y+4}{2}=-2=-8
$$

G (-11, 2)
J (14, -8)
17. What is the distance from $M(-1,6)$ to $N(11,1)$?
A 12 units
C 13 units
B $\sqrt{149}$ units
D 169 units

$$
\begin{aligned}
d & =\sqrt{(-1-11)^{2}+(6-1)^{2}} \\
& =\sqrt{144+25} \\
& =\sqrt{169=13}
\end{aligned}
$$

18. What is the distance from V to W ?

F 17 cm
H 120 cm
G 23 cm
J 289 cm
19. What transformation is shown?

A rotation
C translation

B reflection
D image
20. Given a point in the coordinate plane, the rule $(x, y) \rightarrow(x+2, y-3)$ translates the point in which direction?

F 2 units to the left and 3 units up
G 3 units to the left and 2 units down
H 3 units right and 2 units up
$J 2$ units to the right and 3 units down

Chapter 2

1.What is the next item in the pattern?
$-1,2,-4,8, \ldots$ multiply by (-2)
A -16
C 4
B -4
D 16
2. Which is a counterexample that shows that the following conjecture is false: "If $\angle 1$ and $\angle 2$ are supplementary, then one of the angles is obtuse"?

$$
\begin{aligned}
& \text { F } \mathrm{m} \angle 1=45^{\circ} \text { and } \mathrm{m} \angle 2=45^{\circ} \\
& \mathrm{G} \mathrm{~m} \angle 1=53^{\circ} \text { and } \mathrm{m} \angle 2=127^{\circ} \\
& \mathrm{H} \mathrm{~m} \angle 1=90^{\circ} \text { and } \mathrm{m} \angle 2=90^{\circ} \\
& \text { J } \mathrm{m} \angle 1=100^{\circ} \text { and } \mathrm{m} \angle 2=80^{\circ}
\end{aligned}
$$

3. removed
4. Given the conditional statement "If it is January, then it is winter in the United States," which is true?

F the converse of the conditional
G the inverse of the conditional
H the contrapositive of the conditional
J Not here
5. What is the inverse of the conditional statement "If a number is divisible by 6 , then it is divisible by 3 "?
A If a number is divisible by 3 , then it is divisible by 6.
B If a number is not divisible by 6 , then it is not divisible by 3 .
C If a number is not divisible by 3 , then it is not divisible by 6 .
D If a number is not divisible by 6 , then it is divisible by 3 .
6. removed
7. removed
8. Which is a biconditional statement of the conditional statement "If $x^{3}=-1$, then $x=-1^{\prime \prime}$?

F If $x=-1$, then $x^{3}=-1$.
G $x^{3}=-1$ if $x=-1$.
H $x^{3}=-1$ if and only if $x=-1$.
$\mathrm{J} x=-1 \rightarrow x^{3}=-1$.
9. Which property is NOT used when solving $15=2 x-1$?

A Ref. IS $=2 x-1$
$\begin{aligned} \text { A Reflex. Prop. of }=2 x-1 & =15 \quad \text { (Sym. Prop) } \\ 2 x & =16 \quad \text { (Add .Prop) }\end{aligned}$
B Add. Prop. of $=$

$$
x=8
$$

C Div. Prop. of $=$
D Sym. Prop. of $=$
10. Identify the property that justifies the statement "If $\angle B \cong \angle A$, then
$\angle A \cong \angle B$."
F Sym. Prop. of $=$
G Reflex. Prop. of $=$
H Trans. Prop. of \cong
J Sym. Prop. of \cong

Use the partially completed two-column proof for Exercises 11 and 12.
Given: $\mathrm{m} \angle 1=30^{\circ}$ and $\mathrm{m} \angle 2=2 \mathrm{~m} \angle 1$.
Prove: $\angle 1$ and $\angle 2$ are complementary.
Proof:

Statements	Reasons
1. $\mathrm{m} \angle 1=30^{\circ}$, $\mathrm{m} \angle 2=2 \mathrm{~m} \angle 1$	1. Given
2. $\mathrm{mL2}=2\left(30^{\circ}\right)$	2. Substitution.
3. $\mathrm{mL2}=60^{\circ}$	3. Simplify.
4. $\mathrm{mLl}+\mathrm{mL2}=30^{\circ}+60^{\circ}$	4. Substitution
5. $\mathrm{mL1}+\mathrm{mLZ}=90^{\circ}$	5. Simplify.
6. $\angle 1$ and $\angle 2$ are complementary.	6. Def. of comp. s

11. Each of the items listed below belongs in one of the blanks in the Statements column. Which belongs in Step 4?
A $m \angle 2=2\left(30^{\circ}\right)$
B $\mathrm{m} \angle 1+\mathrm{m} \angle 2=90^{\circ}$
C $\mathrm{m} \angle 1+\mathrm{m} \angle 2=30^{\circ}+60^{\circ}$
D $\mathrm{m} \angle 2=60^{\circ}$
12. Which is the justification for Step 2?

F Add. Prop. of $=$
G Simplify.
H Subst.
J \angle Add. Post.

Use the partially completed two-column and flowchart proofs for Exercises 13 and 14.
Given: $\angle 2 \cong \angle 3$, and $\angle 1$ and $\angle 2$ are adjacent angles whose noncommon sides form a straight line.
Prove: $\angle 1$ and $\angle 3$ are supplementary.
Two-Column Proof:

Statements	Reasons
1. $\angle 2 \cong \angle 3$	1. Given
2. $\mathrm{m} \angle 2=\mathrm{m} \angle 3$	2. Def. of $\cong \boxed{ }$
3. $\angle 1$ and $\angle 2$ are supplementary.	3. Linear Pair Postulate
4. $\mathrm{m} \angle 1+\mathrm{m} \angle 2=180^{\circ}$	4. Def. of supp. $\angle \mathrm{s}$
5. $\mathrm{m} \angle 1+\mathrm{m} \angle 3=180^{\circ}$	5. Substitution
6. $\angle 1$ and $\angle 3$ are supplementary.	6. Def. of supp. \angle

Flowchart Proof:

13. In the flowchart proof, which belongs in the last blank box?
A $m \angle 1+m \angle 2=180^{\circ}$
B Def. of supp. $\stackrel{\Delta}{ }$
C $\mathrm{m} \angle 1+\mathrm{m} \angle 3=180^{\circ}$
D Subst.
14. In the flowchart proof, which theorem justifies the statement " $\angle 1$ and $\angle 2$ are supplementary"?
F Linear Pair Theorem
G Congruent Supplements Theorem
H Right Angle Congruence Theorem
J Congruent Complements Theorem

Chapter 3

Use the figure for Exercises 1 and 2.

1. Classify $\overline{E H}$ and $\overline{D H}$.

A skew segments
B parallel segments
C perpendicular segments
D parallel planes
2. How many segments are skew to $\overline{A E}$?
F 1
G 2
H 3
$\frac{H G}{\overline{B C}, \overline{C D}} \overline{F G}$

Use the figure for Exercises 3 and 4.

3. Which are alternate exterior angles?
A $\angle 1$ and $\angle 3$
C $\angle 3$ and $\angle 6$
B $\angle 1$ and $\angle 8$
D $\angle 6$ and $\angle 7$
4. Which statement is true?

F $\angle 1$ and $\angle 2$ are alternate interior angles.
$\mathrm{G} \angle 1$ and $\angle 3$ are corresponding angles.
$\mathrm{H} \angle 3$ and $\angle 6$ are alternate exterior angles.
$\mathrm{J} \angle 3$ and $\angle 7$ are same-side interior angles.
5. Which correctly completes the sentence? If two parallel lines are cut by a transversal, then the two pairs of same-side interior angles are \qquad _.

A supplementary
B complementary
C corresponding
D congruent
6. What type of angle is $\angle 1$?

F acute $\quad H$ obtuse
G right
J straight
7. Given $\overleftrightarrow{R S} \| \overrightarrow{Q P}$, what is the value of x ?

A 6
C 72
B 9
D 108

Use the figure for Exercises 8 and 9.

8. Which information proves that $r \| s$?

$$
\begin{array}{lr}
\mathrm{F} \angle 1 \cong \angle 3 & \text { H } \angle 4 \cong \angle 6 \\
\mathrm{G} \angle 4 \cong \angle 5 & \text { J } \angle 5 \cong \angle 6
\end{array}
$$

9. If $\mathrm{m} \angle 3=(4 x+20)^{\circ}$ and $\angle 3 \& \angle S$ we alt. int $\mathrm{m} \angle 5=(6 x+10)^{\circ}$, what value $L^{\prime} s$. If they're \cong of x proves that $r \| s$?
A 5
C 40
B 15
D 100
$4 x+20=6 x+10$ $10=2 x$
$x=5$
10. If a transversal is perpendicular to one of two parallel lines, how many different angle measures are formed?
F 1 (all 90°)
H 4
G 3
J 8

11. Which is a possible value of x ?

$$
\begin{gathered}
2 x<x+3 \\
x<3 \\
2 x>0
\end{gathered}
$$

A -2
C 3
$0<x<3$
12. Given: $\overrightarrow{A B} \| \overrightarrow{C D}$. E is on $\overrightarrow{A B}$, and F is on $\overrightarrow{C D}$. $\overrightarrow{E F}$ is the perpendicular bisector of $\overline{C D}$. What is the shortest segment from E to $\overline{C D}$?
$F \overline{A F}$
H $\overline{E F}$
G $\overline{E C}$
$J \overline{E C}$
13. Which justifies Step 3?

Given: $s \perp q$ and $\angle 1 \cong \angle 2$.
Prove: $s \perp p$
Proof:

Statements	Reasons	
1. $\angle 1 \cong \angle 2, s \perp q$	1. Given	
2. $p \\| q$	2. Alt. int. \angle 's. Con verse	
3. $s \perp p$	3. \perp Transversal	hm.

A \perp Trans. Thu.
B $p \| r$
C Cons. of Alt. Int. Is Chm.
D 2 lines \perp to same line $\rightarrow 2$ lines \||

Chapter 4

1. Classify the triangle.

A isosceles acute
B isosceles obtuse
C scalene acute
D scalene obtuse

Use the figure for Exercises 2 and 3.

$$
\begin{aligned}
x+5 & =3 x-1 \\
6 & =2 x \\
x & =3 \\
B C & =3 x-1 \\
& =3(3)-1=8
\end{aligned}
$$

2. Which is NOT a correct classification for the triangle?
F acute
H isosceles
G equiangular
J scalene
3. What is the length of side $\overline{B C}$?
A 3
C 10
B 8
D 24

Use the figure for Exercises 4 and 5.

4. What is $\mathrm{m} \angle K L M ?=20 x+4$
F 3
G 22
$\begin{aligned} \mathrm{H} 42 & =20(3)+4 \\ \mathrm{~J} 64 & =64^{\circ}\end{aligned}$
5. What is $\mathrm{m} \angle M$?
A 0.2
C 26
B 4
D 64
$90^{\circ}-64^{\circ}$
$=26^{\circ}$
6. What is the $\mathrm{m} \angle U$?

F 5
G 15
H 40
$\begin{aligned} m \angle U & =7 x+15 \\ & =120^{\circ}\end{aligned}$
7. Two congruent triangles have the following corresponding parts:
$\overline{R S} \cong \overline{U V}, \overline{R T} \cong \overline{U W}$, and $\angle R \cong \angle U$.
Which is NOT necessarily a correct congruence statement?
A $\triangle R S T \cong \triangle U V W \checkmark$
B $\triangle S T R \cong \triangle V W U \checkmark$
C $\triangle T R S \cong \triangle V W U \times R$

D $\triangle T R S \cong \triangle W U V \checkmark$
8. $\triangle K \underline{L} M \cong \triangle R \underline{S} T . \mathrm{m} \angle L=(3 x+15)^{\circ} \mathrm{mLL}=m \angle 5$ and $\mathrm{m} \angle S=(6 x+3)^{\circ}$. What is the $3 x+15=6 x+3$ value of x ?
F 2
H 6
G 4
J 27

Use the figure for Exercises 9-12.

9. If $A D=5 y+7$ and $B C=7 y-3$, what must the value of y be to prove $\triangle A E D \cong \triangle C E B$ by the SSS Postulate?
A 2
C 17
B 5
D 32
$A D=B C$ $5 y+7=7 y-3$
$10=2 y$
$y=5$
10. What postulate or theorem justifies the congruence statement $\triangle A B E \cong \triangle C D E$?
F SSS
H ASA
G IAS
J ABS
11. If $\angle B$ and $\angle C$ are right angles, what additional congruence statement would allow you to prove $\triangle D C B \cong \triangle A B C$ by the ASA postulate?
A $\angle D B C \cong \angle A C B$
B $\angle B D C \cong \angle C A B$
C $\overline{A B} \cong \overline{D C}$
D $\overline{A C} \cong \overline{D B}$

12. If $\angle A$ and $\angle C$ are right angles and $\overline{A D} \cong \overline{B C}$, what postulate or theorem justifies the congruence statement $\triangle B C D$
$\cong \triangle D A B$?
F SAS
H AAS $\left[\begin{array}{l}\overline{B D} \equiv \overline{B D} \\ \text { Reflexive }\end{array}\right]$
G ASA
J HL
13. removed
14. removed
15. What is the value of x ?

A 12
B 19.5
C 18
D 60

$$
\begin{gathered}
4 x+12=60 \\
4 x=48 \\
x=12
\end{gathered}
$$

Use the partially completed two-column proof for Exercises 16-18.

Given: $\overline{G J}$ bisects $\angle F G H, \overline{F G} \cong \overline{H G}$

Prove: $\overline{F J} \cong \overline{H J}$
Proof:

Statements	Reasons
1. $\overline{G J}$ bisects $\angle F G H$.	1. Given
2. $\angle F G J \cong \angle H G J$	2. Def. of \angle bisector
3. $\overline{F G} \cong \overline{H G}$	3. Given
4. $\angle F \cong \angle H$	4. Base $\angle^{\prime} S$ isor. Δ are
5. $\triangle F G J \cong \Delta H G J$	5. ASA $\equiv T h m$
6. $\overline{F J} \cong \overline{H J}$.	6. CPCTC

16. Which reason belongs in Step 4 ?

F Isosc. \triangle Thm.
G Conv. of Isosc. \triangle Thm.
H ASA
J Def. of \angle bisector
17. Which reason belongs in Step 5 ?

A Isosc. \triangle Thm. C CPCTC
B ASA
D HL
18. Which reason belongs in Step 6 ?

F Isosc. \triangle Thm.
G ASA
H CPCTC
J Def. of \angle bisector

Chapter 5

1. $\overline{B X}$ is the perpendicular bisector of $\overline{A C}$.

What is the value of n ?

A 0
C 4
B $\frac{1}{4}$
D Not here
2. Which point is on the perpendicular bisector of the segment with endpoints $(-2,5)$ and $(-2,-3)$?

F $(-2,8)$
G $(-2,4)$
$H(-2,1)\left(\frac{-2-2}{2}, \frac{5-3}{2}\right)$
3. What information is sufficient to allow you to conclude that Y is on the bisector of $\angle E$?

A $\mathrm{m} \angle 1=90^{\circ}$
B $\mathrm{m} \angle 2=90^{\circ}$
C $\mathrm{m} \angle 1=90^{\circ}$ and $\mathrm{m} \angle 2=90^{\circ}$
D $\mathrm{m} \angle F Y E+\mathrm{m} \angle D Y E=90^{\circ}$
4. Point Z is the circumcenter of $\triangle T U V$. What is the value of $U V$? $\underset{\text { equidistant }}{ }$
 \perp bisector meet]

5. What is the distance from X to $\overline{O N}$?

A 8
C 11
B 12.8
D 12
6. If $W X=3.6, W L=6.1$, and $K W=8$, what is the value of $Z W$?

F 3.05
H 4
G 3.6
J 4.06
7. Which is the orthocenter of a triangle with $(3,4)$ vertices $(-2,1),(3,4)$, and $(3,-4)$?
A $(0,1)$
C $(6,1)$
B $(1,0)$
D $(8,1)$
8. $\overline{S Q}$ is a midsegment of $\triangle N O P$. What is

$$
(3,-4)
$$ the length of $\overline{O P}$?

9. $\triangle T U V$ is the midsegment triangle of $\triangle A B C$. Which angle does NOT necessarily measure 40° ?

A $\angle V T U \checkmark$
C $\angle C T V \times$
B $\angle T \cup A \vee$
D $\angle V B U \checkmark$
10. removed
11. The lengths of two sides of a triangle are $11+7,7$ and 11. Which could NOT be the length 18 of the third side?
sum
A 5 V
C $12 \sqrt{ }$
B 10 V
D $19 x$
12. Which statement is false?

F $\triangle K L M$ is scalene. V
$\mathrm{G} M L+K M>K L \sqrt{ } \quad[$ rum 2 smallersides $\underset{>}{>}$ 3rl side $]$
$\mathrm{H} \mathrm{m} \angle L<\mathrm{m} \angle K \sqrt{ }$
$J K M>M L \times\left[K M\right.$ smallest side- $\left.\begin{array}{l}\text { opposite } \\ \text { smallest angle }\end{array}\right]$
13. Which best describes the range of values for x ?

$$
\begin{array}{ll}
\text { * A(O) } x<7 & \text { C } x<15 \\
\text { B } 0<x<15 & \text { D } 6<x<7
\end{array}
$$

14. What is the value of x in simplest radical form?

F $3 \sqrt{12}$
H $\sqrt{72}$
G $6 \sqrt{2}$
J $\sqrt{89}$
$=\sqrt{36.2}$
$=6 \sqrt{2}$
15. Which numbers form a Pythagorean

| triple? $3^{2}+4^{2} \neq 6^{2}$ | $3(3,4,5)$ |
| :--- | :--- | :--- |
| A $3,4,6 \times$ | C $9,12,15$ |$\quad 9^{2}+12^{2}=15^{2}$

16. Which side length will form an obtuse triangle with sides of length 8 and 10 ?
$R E . \Delta$ F $6,6,8,10$
G $9,8,10$
H $128,10,12$
$8^{2}+10^{2}>12^{2}$ Acule
$64+100>144$
$8^{2}+9^{2}>10^{2}=$ Acule
J 13 8, 10, 13
\Rightarrow ORTUSE
17. What is the value of x in simplest radical form?

$45^{\circ}-45^{\circ}-90^{\circ}$

A 2.5
C $\frac{5 \sqrt{2}}{2}$
B $\frac{5}{\sqrt{2}}$
D $5 \sqrt{2}$
18. Which is a correct set of values?

$X F x=27, y=9 \sqrt{3}, z=18 \sqrt{3}$
$y=18 \sqrt{3}$
G $x=27, y=18 \sqrt{3}, \quad z=9 \sqrt{3}$
H $x=9 \sqrt{3}, y=27, z=18 \sqrt{3} I_{f} y=27, z=\frac{27}{2} x$
J $x=18 \sqrt{3}, y=9 \sqrt{3}, z=27$ If $z=27, y=54 x$

Chapter 6

1. Which term does NOT describe the figure?

A concave
C polygon
B hexagon
D regular
2. What is the sum of the measures of the interior angles of a 5 -sided convex polygon?
$(5-2) 180^{\circ}$
A 72
C 540
B 360
D 900
3. What is the value of a ?

A 60
B 80 P^{\prime} ogram
4. The diagonals of $\square A B C D$ intersect at X. Which is NOT true?

A $\angle D A B \cong \angle B C D$
B $\mathrm{m} \angle D A B+\mathrm{m} \angle C B A=180^{\circ}$
C $\overline{B C} \cong \overline{A D} \checkmark$
D $\overline{A X} \cong \overline{X B} \times$

Use the figure for Exercises 5 and 6.

5. $W X Y Z$ is a parallelogram. Which is $\mathrm{m} \angle W$?
A 68°
$180^{\circ}-112^{\circ}=68^{\circ}$ B 112°
6. $W X Y Z$ is a parallelogram. What is the
value of x ?
A 7
B 10
$8 x+12=68$ $8 x=56$
$x=7$
7. Which MUST be a parallelogram?

Figure 1

A Figure 1

B Figure 2
8. If $\overline{E F} \| \overline{G H}$, what additional information would allow you to conclude that $E F G H$ is a parallelogram?

A $\overline{E F} \cong \overline{G H}$
B $\overline{F G} \cong \overline{E H}$
9. Which is NOT always true?

A A square is a rhombus.
B A rectangle is a parallelogram.
C A rhombus is a rectangle. \times [only if it's a square]
D A square is a rectangle. \checkmark
10. $P Q R S$ is a rectangle. $P R=26$. What is the value of x ?

A 6.5
B 13
11. $J K L M$ is a rhombus. If $m \angle J M L=70^{\circ}$, what is the value of $\mathrm{m} \angle J K M$?

A 35°
B 55°
C 70°
D 110°
12. removed
13. removed
14. Which best describes the figure?

A kite
B parallelogram
C quadrilateral
D trapezoid
15. What is $\mathrm{m} \angle F$ in the isosceles trapezoid?

A 79°
B 101°
16. In trapezoid $P Q R S$, what is the length of midsegment $\overline{X Y}$?

A 48 cm
B 51 cm

