	,
1. Draw a regular octagon. On it, draw all lines of symmetry.	2. Draw line segment \overline{AB} . C is the midpoint of \overline{AB} . If AC = 8, find AB and BC.
3. The relationship is: "is the same age as" Is this relationship (a) reflexive (b) symmetric (c) transitive? Give an example or counterexample for each of these.	4. Given the points A (-2, 3) and B (6, -5) find (a) the midpoint of \overline{AB} (b) the length of \overline{AB} (c) the slope of \overline{AB}
5. For the line $y = 3x + 2$, find the equation of the line passing through the point (3,2) and (a) parallel and (b) perpendicular to the given line.	6. Define:(a) supplementary angles(b) complementary angles.
7. Draw (a) \overline{AB} (segment AB) (b) \overrightarrow{AB} (ray AB) (c) \overrightarrow{AB} (line AB)	 8. Continue the pattern for the next 2 numbers: (a) 1, 4, 9, 16, 25, (b) 1, 3, 6, 10, 15,
9. B is in the interior of $\angle AOC$. If $\angle AOC = 70^{\circ}$ and $\angle AOB = 54^{\circ}$, find $\angle BOC$	10. Let B be between C and A. Use the segment addition postulate to solve for x. BC = $4x + 3$, AB = $2x - 1$, AC = 62 . Find BC.
11. Find the sum of the measures of the interior angles of a convex octagon.	12. Define what is meant by congruent.
	What type of angles are: (a) $\angle 1$ and $\angle 7$ (b) $\angle 1$ and $\angle 6$ (c) $\angle 1$ and $\angle 5$ (d) $\angle 3$ and $\angle 7$ (e) $\angle 2$ and $\angle 7$ (e) $\angle 1$ and $\angle 3$
 14. (a) The measure of each exterior angle of a regular hexagon is: (b) The measure of each interior angle of a regular hexagon is: 	15. If $\triangle ABC$ is congruent to $\triangle DEF$ then (a) BC \cong ? and (b) $\angle A \cong$?
16. Define:(a) an equiangular polygon(b) an equilateral polygon(c) a regular polygon	17. The angles of a hexagon differ from each other by 5° when put in ascending order. What are the angles?
18. For parallelogram ABCD, if $m \angle ABC = 85^{\circ}$, then: A B C (a) $m \angle BCD = ?$ (b) $m \angle CDA = ?$	19. $AC \cong AB$. Find the measure of x and y. A x 115° y C B

Geo XL Challenge Test Review A	Page 2 of 4
20. A trapezoid has parallel sides that measure 10 cm and 14 cm. What is the length of the midsegment?	21. Given $\angle B \cong \angle E$ and BC $\cong EF$. What other piece of information is needed to show $\triangle ABC \cong \triangle DEF$ by AAS Congruence Postulate?
22. $\angle A \cong \angle B$ and $AC\cong BC$.	23. D F
$\Delta ADC \cong \Delta BEC$ by what postulate?	(a) D is the midpoint of AB, F is the midpoint of BC and E is the midpoint of AC. If DE = 6, find BC. (b) If instead, BC = $2x + 1$ and DE = $\frac{3}{2}x - 2$. Solve for x
24. Rewrite the statement in bi-conditional form: Every equilateral triangle has 3 congruent angles.	25.Define (a) an acute triangle, (b) an obtuse triangle, (c) an isosceles triangle, (d) a scalene triangle
26. Solve: $3d + 5t = 42$ 4d + 3t = 45	27. WXYZ is a rectangle. WX = $5x - 4$ and XY = $3x + 2$ and the perimeter of the rectangle is 32. Find the numerical value of ZY.
28. Define congruent polygons?	
29. A AB is perpendicular to BC. Find $\angle A$ and $\angle C$. D B C	 30. (a) The medians of a triangle all pass through which point? (b) The angle bisectors of a triangle all pass through which point? (c) The altitudes of a triangle all pass through which point? (d) The perpendicular bisectors of a triangle all pass through which point?
31. If $\angle ACB = 80^\circ$, what is $\angle BCE$?	32. 135° 80° 22° 90° 500 135°
33. Two sides of a triangle are 8 and 11. What are the possible measurements of the third side?	34. ∠A and ∠C are a linear pair. If ∠A = 25° then ∠C ?
35. △ABC \cong △DEF, AB = 10 feet, m∠C = 50° and m∠B = 43°. Find (a) ∠D and (b) DE	36. If A = (-3, 2) and B = (4, 5), find the length of AB

Geo XL Challenge Test Review A	Page 4 of 4
 52. If it is a triangle, classify it as right, obtuse or acute. (a) 6, 11, 17 (b) 8, 15, 17 (c) 9, 15, 17 (d) 7, 24, 26 	53. a b b c c c c c c c c
	$m \angle 2 = (3x-10)^\circ$, find x.
54. Find x and y.	55. Find x and y.
y 60° 18 x	10 $\frac{45^{\circ}}{y}$
56. Draw an acute angle. Construct the angle <u>bisector</u> of the angle using a straight edge and a compass.	57. Draw a line segment. Construct the <u>perpendicular</u> <u>bisector</u> of the line segment using a straight edge and a compass.
58. Draw line m and a point A not on the line. Construct the parallel line to line m, through point A using a straight edge and compass.	59. Draw a triangle. COPY your triangle using a straight edge and compass.