Geometry XL First Semester Final Review: HMH Chapters 1-6

1. Draw a regular octagon. On it, draw all lines of symmetry.	2. Draw line segment \overline{AB} . C is the midpoint of \overline{AB} . If AC = 8, find AB and BC. $AB = 16$
3. The relationship is: "is the same age as" Is this relationship (a) reflexive (b) symmetric (c) transitive? Give an example or counterexample for each of these. TRUE (c) John is the same age as John. TRUE (c) John is the same age as John. TRUE (c) John is the same age as John. TRUE (c) John is the same age as John.	4. Given the points A (-2, 3) and B (6, -5) find (a) the midpoint of $\overline{AB}(-2\pm 6, 3\pm 5) \pm ((2, -1))$ (b) the length of $\overline{AB}=\sqrt{(2-6)^2+(3+5)^2} \pm (64+64\pm (2+5)^2) \pm (64+64\pm (2+5)^2)$ (c) the slope of $\overline{AB} = 3-5 = 8 = -1$
5. For the line $y = 3x + 2$, find the equation of the line passing through the point (3,2) and (a) parallel and (b) perpendicular to the given line.	6. Define: (a) supplementary angles foir angles with sum 180°. (b) complementary angles. Pair angles with sum 90°.
7. Draw (a) \overrightarrow{AB} (segment AB) (b) \overrightarrow{AB} (ray AB) (c) \overrightarrow{AB} (line AB)	8. Continue the pattern for the next 2 numbers: (a) 1, 4, 9, 16, 25, 36, 9 (b) 1, 3, 6, 10, 15, 21, 28
9. B is in the interior of $\angle AOC$. If $\angle AOC = 70^{\circ}$ and $\angle AOB = 54^{\circ}$, find $\angle BOC$ A 70-54 = 16°	10. Let B be between C and A. Use the segment addition postulate to solve for x. BC = 4x + 3, AB = 2x - 1, AC = 62. Find BC. (2x-1)+(1x+3)=62 $f(x+2)=62$ $f(x)=1012. Define what is meant by construct$
angles of a convex octagon. $(8-2)(180^{\circ}) = 1080^{\circ}$	All corresponding sides & ongles are = the same
	What type of angles are: (a) $\angle 1and \angle 7$ (b) $\angle 1and \angle 6$ (c) $\angle 1and \angle 5$ (d) $\angle 3and \angle 7$ (e) $\angle 2and \angle 7$ (e) $\angle 1and \angle 3$ (a) voticed $\angle 1^{c}$ (b) linear pair (c) alt. ext. $\angle 1^{c}$ (d) alt. int. $\angle 1^{c}$ (e) same ride int $\angle 1^{c}$ (e) corresponding $\angle 1^{c}$
14. (a) The measure of each exterior angle of a regular hexagon is: $\frac{460}{5} = 60^{\circ}$ (b) The measure of each interior angle of a regular hexagon is: $\frac{6-2}{120^{\circ}} = 120^{\circ}$	15. If $\triangle ABC$ is congruent to $\triangle DEF$ then (a) $BC \cong ?$ and (b) $\angle A \cong ? \bigtriangleup$
 16. Define: (a) an equiangular polygon All L's ≓ (b) an equilateral polygon All sides ≓ (c) a regular polygon All L's & sides ≓ 	17. The angles of a hexagon differ from each other by 5° when put in ascending order. What are the angles? x + (x+5) + (x+16) + (x+15) + (x+26) + (x+25) = 720 6x + 75 = 720 $x = 167.5^{\circ}, 112.5^{\circ}, 112.5^{\circ}, 122.5^{\circ}, 122.5^{\circ}$ $x = 167.5^{\circ}, 112.5^{\circ}, 112.5^{\circ}, 122.5^{\circ}, 122.5$
18. For parallelogram ABCD, if $m\angle ABC = 85^{\circ}$, then: A B C (a) $m\angle BCD = ? 180^{\circ} - 85^{\circ} = 95^{\circ}$ (b) $m\angle CDA = ? 85^{\circ}$	19. $AC \cong AB$. Find the measure of x and y. $A = 180^{\circ} - 2(65^{\circ})$ $= 550^{\circ}$ $U = 655^{\circ}$
	1. Draw a regular octagon. On it, draw all lines of symmetry. 3. The relationship is: "is the same age as" Is this relationship (a) reflexive (b) symmetric (c) transitive? Give an example or counterexample for each of these. The (c) Stan it the low core of Stan (c) AB (line AB) 9. B is in the interior of $\angle AOC$. If $\angle AOC = 70^{\circ}$ and $\angle AOB = 54^{\circ}$, find $\angle BOC$ A (c) \overrightarrow{AB} (line AB) 11. Find the sum of the measures of the interior angles of a convex octagon. (8-2) (180°) = [1080°) 13. 14. (a) The measure of each exterior angle of a regular hexagon is: $\overrightarrow{B} = \overrightarrow{BO}$ (b) The measure of each interior angle of a regular hexagon is: $\overrightarrow{B} = \overrightarrow{BO}$ 16. Define: (a) an equiangular polygon All $2^{\circ}S$ \overrightarrow{S} = \overrightarrow{BS} 18. For parallelogram ABCD, if $\angle ABC = 85^{\circ}$, then: A (a) $m \angle BCD = ?$ $180^{\circ} - 85^{\circ} = \cancel{SS}^{\circ}$

Geometry XL First Semester Final Review: HMH	Chapters 1-6 Page 2 of 4
20. A trapezoid has parallel sides that measure 10 cm and 14 cm. What is the length of the midsegment? 10+14 = 12 cm 22. $\angle A \cong \angle B$ and $AC\cong BC$.	21. Given $\angle B \cong \angle E$ and BC $\cong EF$. What other piece of information is needed to show $\triangle ABC \cong \triangle DEF$ by AAS Congruence Postulate?
$\Delta ADC \cong \Delta BEC$ by what postulate? ASA	$B = \frac{1}{2}$
	(a) D is the midpoint of AB, F is the midpoint of BC and E is the midpoint of AC. If DE = 6, find BC. (b) If instead, BC = $2x + 1$ and DE = $\frac{3}{2}x - 2$. Solve for x
24. Rewrite the statement in the if-then form: Every equilateral triangle has 3 congruent angles. A Δ is equilateral IFF it has $3 \in$ angles.	25.Define (a) an acute triangle, (b) an obtuse triangle, (c) an isosceles triangle, (d) a scalene triangle (d) No sides = (a) All L'S acute (b) one abrue 2 (c) At least 2 = sides.
26. Solve: $3d + 5t = 42 \times 4 \longrightarrow 12d + 20t = 168$ $4d + 3t = 45 \times 3 \longrightarrow 12d + 9t = 135$ 3d + 5t = 42 3d + 15 = 42 3d = 12 28. Define congruent polygons? All comparison of loc of	27. WXYZ is a rectangle. WX = 5x -4 and XY = 3x +2 and the perimeter of the rectangle is 32. Find the way is a rectangle is 32. Find the way is a rectangle is 32. Find the way is a rectangle is $32 \cdot 10^{-12} = 16^{-12} \cdot 10^{-12} = 16^{-12} \cdot 10^{-12} \cdot 10^{-12}$
29. A B is perpendicular to BC. Find $\angle A$ and $\angle C$. 50° D $2 = 0°$ 30° $80°$ $M/A = 50°3x$ $6x$ $M/A = 50°6x$ $40°$ $M/A = 50°31. \text{ If } \angle ACB = 80°, \text{ what is } \angle BCE?$	30. (a) The medians of a triangle all pass through which point? <u>Centroid</u> (b) The angle bisectors of a triangle all pass through which point? <u>Incenter</u> (c) The altitudes of a triangle all pass through which point? <u>Or thocenter</u> (d) The perpendicular bisectors of a triangle all pass through which point? <u>Circumcenter</u> 32.
$A^{T} \qquad B \qquad m LBCE = 100^{\circ}$	$\frac{135^{\circ}}{45^{\circ}} \xrightarrow{80^{\circ}} \frac{22^{\circ}}{48^{\circ}} \xrightarrow{90^{\circ}} \frac{135^{\circ}}{48^{\circ}} \xrightarrow{135^{\circ}} \xrightarrow{135^{\circ}} \frac{135^{\circ}}{48^{\circ}} \xrightarrow{135^{\circ}} \xrightarrow{135^{\circ}}$
33. Two sides of a triangle are 8 and 11. What are the possible measurements of the third side? $3 < 3^{-1}$ side < 19 $3 \leq \Delta ABC \cong \Delta DEF$, AB = 10 feet, m∠C = 50° and m∠B = 43°. Find (a) ∠D and (b) DE	34. ∠A and ∠C are a linear pair. If ∠A = 25° then ∠C ? m∠C = 180°-25° = 155° 36. If A = (-3, 2) and B = (4, 5), find the length of AB AB = $\sqrt{(-3-4)^2 + (2-5)^2} = \sqrt{49 + 9} = \sqrt{58}$
$\frac{10}{10} = \frac{10}{10} = 10$	· · · · · · · · · · · · · · · · · · ·

•

Geometry XL First Semester Final Review: HMH Chapters 1-6

Page 3 of 4

Geometry XL First Semester Final Review: HMH	Chapters 1-6 Page 4 of 4
52. If it is a triangle, classify it as right, obtuse or acute. (a) 6, 11, 17 $G+11=17$ Not a Δ (b) 8, 15, 17 (c) 9, 15, 17 (d) 7, 24, 26 (b) 8 ² +15 ² =17 ² (c) 9 ² +15 ² >17 ² (d) 7 ² +24 ² 26 ² 289 = 289 306 > 289 625 < 676 Right Δ Acute Δ Obtuse Δ	53. 1 2 $m \angle l + m \angle 2 = l & O^{\circ}$ $t l & 3O^{\circ} + \beta \times (-1 \circ) = l & 0^{\circ}$ $1 2O + 3 \times = l & 0^{\circ}$ $1 2O + 3 \times = l & 0^{\circ}$ $1 2O + 3 \times = l & 0^{\circ}$ Line a is parallel to b. If $m \angle 1 = 130^{\circ}$ and $\chi = 2 \circ$ $m \angle 2 = (3x-10)^{\circ}$, find x.
54. Find x and y. $y = \begin{cases} 60^{\circ} & 18 \\ y & 30^{\circ} & 60^{\circ} & -90^{\circ} \\ 1 & 53 & 2 \\ y & 30^{\circ} & 18 \\ y & x & 18 \\ y & x & x \\ y & x & x$	55. Find x and y. $45^{\circ} - 445^{\circ} - 90^{\circ}$ $1 : 1 : 52$ $10 : 9 : 2$ y $y = 10$ $y = 10$ $y = 10\sqrt{2}$
56. Draw an acute angle. Construct the angle bisector of the angle using a straight edge and a compass.	57. Draw a line segment. Construct the perpendicular bisector of the line segment using a straight edge and a compass.
58. Draw line m and a point A not on the line. Construct the parallel line to line m, through point A using a straight edge and compass.	59. Draw a triangle. COPY your triangle using a straight edge and compass.

Review all proofs - there will be proofs on the final !!!!

	All are plograms:
(5) y=3x+2; (3,2)	(47) (a) Rhombus · All sides =
(a) would do go = $[3]$ (b) \perp slope = $[3]$	· opp L's bisected
(α) parameter stope (α) = (α) = (α) = (α)	• Diagonals L
y-2=3(x-3) $y=2=3(x-3)$	(b) Rectangle · All L'S 90°
y - 2 = 3x - 9 $3y - 6 = -x + 3$	· Diagonals L
y = 3x - 7 3y = -x + 9 $y = -\frac{1}{2}x + 3$	(<) Square · Everything true for rhombus & rectargle.
Angle Bilector	
	X (3) Copying an
	✓ → m angle
3	