1. Draw a regular octagon. On it, draw all lines of symmetry.

3. The relationship is: "is the same age as" Is this relationship (a) reflexive (b) symmetric (c) transitive? Give an example or counterexample for each of these. HRUE (a) John is the some age as John
TRVEE) (b) Tohn is the same age ar san \& som is the same age as John. TREJ(()) John is the same age as sam \& sam is the same age as Tom,
4. For the line $y=3 x+2$, find the equation of the line passing through the point $(3,2)$ and (a) parallel and (b) perpendicular to the given line. [see end]
5. Draw
(a) $\overline{A B}$ (segment $A B$)

$\stackrel{\square}{B}$ B
(c) $\overleftrightarrow{A B}$ (line AB)
$\stackrel{A}{A} \quad \stackrel{B}{B}$
6. B is in the interior of $\angle A O C$. If $\angle A O C=70^{\circ}$ and $\angle A O B=54^{\circ}$, find $\angle B O C$ A
7. Find the sum of the measures of the interior angles of a convex octagon. $(8-2)\left(180^{\circ}\right)=1080^{\circ}$
8. Draw line segment $\overline{A B}$. C is the midpoint of $\overline{A B}$. If $A C_{8}=8$, find $A B$ and $B C . ~ A B=16$ $\because 8, \quad \subset 18 \quad B \quad B C=8$
9. Given the points $A(-2,3)$ and $B(6,-5)$ find
(a) the midpoint of $\overline{A B}\left(-\frac{2+6}{2}, \frac{3-5}{2}\right)=(2,-1)$
(b) the length of $\overline{A B}=\sqrt{(-2-6)^{2}+(3+5)^{2}} \sqrt{64+64}=\sqrt{2 \cdot 64}=8 \sqrt{2}$
(c) the slope of
$\overline{A B}$

$$
\frac{3--5}{-2-6}=\frac{8}{-8}=-1
$$

6. Define:
(a) supplementary angles Pair angles with sum 180°
(b) complementary angles. Pair angler with sum 90°.
7. Continue the pattern for the next 2 numbers:
(a) $1,4,9,16,25,36, .4 .9$
(b) $1,3,6,10,15,21, .28$
 12. Define what is meant by congruent.

All corresponding sides \& angles we \cong
13.

14. (a) The measure of evach exterior angle of a regular hexagon is: $\frac{360}{5}=60^{\circ}$
(b) The measure of each interior angle of a regular hexagon is: $\frac{(6-2) 180^{\circ}}{5}=120^{\circ}$ or $180^{\circ}-60^{\circ}=120^{\circ}$
16. Define:
(a) an equiangular polygon All L^{\prime} S \cong
(b) an equilateral polygon All sides =
(c) a regular polygon All L's \& sides \equiv
18. For parallelogram $A B C D$, if $m \angle A B C=85^{\circ}$, then:

(a) $\mathrm{m} \angle \mathrm{BCD}=$? $180^{\circ}-85^{\circ}=95^{\circ}$
(b) $\mathrm{m} \angle \mathrm{CDA}=$?

What type of angles are:
(a) \angle land $\angle 7$ (b) $\angle 1$ and $\angle 6$
(c) \angle land $\angle 5$
(d) $\angle 3$ and $\angle 7$
(e) $\angle 2$ and $\angle 7$
(e) \angle land $\angle 3$
(a) votical L's (b) linear pour
(c) alt. ext. L's (d)alt.int. L's
(e) same side int L's (e) corresponding L's
15. If $\triangle A B C$ is congruent to $\triangle D E F$ then
(a) $\mathrm{BC} \cong$? and (b) $\angle A \cong ? \angle D$

EF
17. The angles of a hexagon differ from each other by 5° when put in ascending order. What are the angles? $x+(x+5)+(x+10)+(x+15)+(x+20)+(x+25)=720$
$\begin{array}{r}6 x+75=720 \\ x=107.5^{0}\end{array} \quad 107.5^{\circ}, 112.5^{\circ}, 117.5^{\circ}, 1225^{\circ}, 127.5^{\circ} 1.5^{\circ}$
19. $A C \cong A B$. Find the measure of x and y .

20. A trapezoid has parallel sides that measure 10 cm and 14 cm . What is the length of the midsegment?

$\Delta A D C \cong \triangle B E C$ by what postulate?
21. Given $\angle B \cong \angle E$ and $B C \cong E F$. What other piece of information is needed to show $\triangle A B C \cong \triangle D E F$ by AAS Congruence Postulate?
23.

(a) D is the midpoint of $A B, F$ is the midpoint of $B C$ and E is the midpoint of $A C$. If $D E=6$, find $B C$.
(b) If instead, $B C=2 x+1$ and $D E=\frac{3}{2} x-2$. Solve for x
25.Define (a) an acute triangle, (b) an obtuse triangle,
(c) an isosceles triangle, (d) a scalene triangle (d) No sides \leq (a) All L's acute (b)one dbtuse \angle (c)At beart $2 \equiv$ sides.
27. $W X Y Z$ is a rectangle. $W X=5 x-4$ and $X Y=3 x+2$ and the perimeter of the rectangle is 32 . Find the ${ }^{w} 5 x-4 \|^{\prime \prime}$ numerical value of $Z Y$. $(5 x-4)+(3 x+2)=16$

28. Define congruent polygons? All corresponding sides \& L's we =
29. $A \quad A B$ is perpendicular to $B C$. Find $\angle A$ and $\angle C$.

31. If $\angle A C B=80^{\circ}$, what is $\angle B C E$?

33. Two sides of a triangle are 8 and 11. What are the
possible measurements of the third side?
diff $3^{3<3^{\text {rd }} \text { side }<19 \text { sum } ~}$
35. $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}, \mathrm{AB}=10$ feet, $\mathrm{m} \angle \mathrm{C}=50^{\circ}$ and
$\mathrm{m} \angle \mathrm{B}=43^{\circ}$. Find (a) $\angle \mathrm{D}$ and (b) $D E$
30. (a) The medians of a triangle all pass through which point? Centroid
(b) The angle bisectors of a triangle all pass through which point? Incenter
(c) The altitudes of a triangle all pass through which point? orthocenter
(d) The perpendicular bisectors of a triangle all pass through which point? circumcenter
32.

Find x
$m \angle x=57^{\circ}$
34. $\angle \mathrm{A}$ and $\angle \mathrm{C}$ are a linear pair.

If $\angle A=25^{\circ}$ then $\angle C$?

$$
m \angle C=180^{\circ}-25^{\circ}=155^{\circ}
$$

36. If $A=(-3,2)$ and $B=(4,5)$, find the length of $A B$

$$
A B=\sqrt{(-3-4)^{2}+(2-5)^{2}}=\sqrt{49+9}=\sqrt{\sqrt{58}}
$$

Geometry XL First Semester Final Review: HMH Chapters 1-6
37. For the conditional statement, "If I buy Ms. Doherty presents, then she will be happy!".... the underlined portion is called the? hypothesis
39. (A) How many points determine a plane?
(B) How many points determine a line?
41. Diagram not to scale.

The shortest side of the triangle is:

43. If I study for my semester final, then I will do well.
(a) Find the converse of the above statement.
(b) Find the contrapositive of the above statement.
(a) If I do well in my semestor final, then I studied (b) If I don't do well in my semester final, then I didn't

38. Assume the following statements are true.
"If I go to my geometry lesson, I will get homework. If get homework, then I will understand the work." I didn't go to my geometry lesson. The conclusion of the syllogism is: I will not understand the work.
40. $\angle 1$ and $\angle 2$ are supplementary angles and $\angle 1$ and $\angle 3$ are vertical angles. If $m \angle 2=65^{\circ}$, then
$m \angle 3=? \stackrel{1 / 2}{\stackrel{1}{2}}$
$180^{\circ}-65^{\circ}=115^{\circ}$
42. If $m \angle J O K=(x+10)^{\circ}$ and $m \angle K O L=(4 x-5)^{\circ}$, and $m \angle J O L=60^{\circ}$. Find $m \angle J O K$ and $m \angle K O L$

46. Find the values of the variables in the parallelogram:

47. Define: (a) A rhombus (b) A rectangle (c) A square. Describe above using sides, angles and diagonals. seo and)
48. Find x in simplified radical form:

50. $\angle 1$ and $\angle 2$ are a linear pair. $\mathrm{m} \angle 2=56^{\circ} . \mathrm{m} \angle 1=$?

49. Find x and y.

51. Find the equation of the perpendicular bisector of $A=(3,4)$ and 7,2$)$ midpoint $:\left(\frac{3+7}{2}, \frac{4+2}{2}\right)=(5,3)$
Slope $A B=\frac{4-2}{3-7}=\frac{2}{-4}=\frac{-1}{2} \quad \begin{aligned} & y-3=2(x-5) \\ & y-3=2 x-10\end{aligned}$
Lslope $=2$
$y-3=2 x-10$
$y=2 x-7$
52. If it is a triangle, classify it as right, obtuse or acute.
(a) $6,11,176+11=17$ Not a Δ
(b) $8,15,17$
(c) $9,15,17$
(d) $7,24,26$
(b) $8^{2}+15^{2}=17^{2}$ (c) $9^{2}+15^{2}>17^{2}$ $289=289$
Right Δ
Acute \triangle
(d) $7^{2}+24^{2} \quad 26^{2}$
$625<676$
obtuse Δ
53.

Line a is parallel to b . If $\mathrm{m} \angle 1=130^{\circ}$ and $m \angle 2=(3 x-10)^{\circ}$, find x.

56. Draw an acute angle. Construct the angle bisector of the angle using a straight edge and a compass.
58. Draw line m and a point A not on the line. Construct the parallel line to line m, through point A using a straight edge and compass.
57. Draw a line segment. Construct the perpendicular bisector of the line segment using a straight edge and a compass.
59. Draw a triangle. COPY your triangle using a straight edge and compass.

Review all proofs - there will be proofs on the final!!!!
(5)

$$
y=3 x+2 ; \quad(3,2)
$$

(a) parallel slope $=3$
(b) 1 slope $=$ \square

$$
\begin{array}{ll}
y-2=3(x-3) & y-2=-\frac{1}{3}(x-3) \\
y-2=3 x-9 & 3 y-6=-x+3 \\
y=3 x-7 & 3 y=-x+9
\end{array}
$$

All we programs:
(a) Rhombus - All sides \cong

- opp L's bisected
- Diagonals $\frac{1}{0}$
(b) Rectangle
- Diagonals 1
(c) Square. Everything true for rhombus \& rectangle.

Angle Bisector
(56)

(57)

(58)

