Review for Spring Final Geometry XL Doherty

3. If $\mathrm{A}=(3,1)$ and $\mathrm{B}=(2,-4)$. Find vector $\overrightarrow{A B}$

$$
\stackrel{\rightharpoonup}{A B}=\langle 2-3,-4-1\rangle=\langle-1,-5\rangle
$$

4. Two legs of a right triangle have lengths 10 and
5. The measure of the smaller acute angle is:
$\tan A=710 ; A=\tan ^{-1}(0.7)=35^{\circ}$
6. A rectangle has length a and width b. An
expression for its area is... $A=a b$
7. $A(2,-3)$ is translated onto A^{\prime} by the vector $\vec{u}=\langle-4,2\rangle$ Find the coordinates of $A^{\prime} \cdot A^{\prime}=(-2,-1)$
8. What is a Pythagorean triple?
a, b, c where $a^{2}+b^{2}=c^{2}$
个 \uparrow ail integers
9. Triangle ABC is transformed by the motion rule $(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}+2, \mathrm{y}-3)$ where $\mathrm{A}(3,2), \mathrm{B}(2,4)$ and $C(0,1)$. Find the coordinates of $A^{\prime}, B^{\prime}, C^{\prime}$.

$$
A^{\prime}(5,-1), B^{\prime}(4,1), C^{\prime}(2,-2)
$$

9. For a circle of radius 8 feet, find the arc length s subtended by a central angle of 31°. 4 .33pt
10 . The area of a trapezoid is $140 \mathrm{in}^{2}$. If the height is 8 inches and the longer base 24 inches, what is the length of the shorter base? Round your answer to the nearest tenth. $\begin{aligned} & \frac{1}{2}(x+24)(8)=140 \\ & x+24 \geq 35\end{aligned}$
$x+24=35$
10. A line which intersects a circle at exactly two points is called.... secant line
11. Find the missing angle and side measures of $\triangle \mathrm{ABC}$, given that $\angle A=30^{\circ}, \angle C=90^{\circ}$ and
$C B=10$.

$1: \sqrt{3}: 2 \quad m \angle B=60^{\circ}$
$\begin{array}{ll}10: 10 \sqrt{3}: 20, & A B=20 \\ 1 & A C=10 \sqrt{3}\end{array}$
Pdyhedron with $211, \cong$ faces called baser. other labural face are parallelograms
12. (a)Lines 1 and m intersect at point O and the Angle between 1 and m is 23°. A figure is reflected in line 1 followed by a refection in line m. The overall effect is: Rotation, center 0 , angle 46° (b) If the parallel lines p and q are 6 cm apart and a figure is reflected in line p and then in line q, the overall effect is: Transtation $\sqrt{12 c m} \perp$ to lines p \& q 15. The shorter leg of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle is 5.1 feet long. Find the perimeter. $1: \sqrt{3}: 2 \quad P=5.1+10.2+5.1 \sqrt{3}$

13. An expression for the circumference of a circle with radius r is: $C=2 \pi r$
14. If two solids have the same height and the same cross-sectional area at every level, then they have the same? Volume
15. Which of the following is not enough information to solve a right triangle?
(A) One side length and one acute angle
(B) One side length and one trig. ratio
(C) Two sides (D) Two angles
16. The sides of a right triangle are $x+3, x+4$, and $x+5$ units long. Find the side lengths of the $(x+3)^{2}+(x+4)^{2}=(x+5)^{2}$ triangle by solving for x .
$x^{2}+6 x+9+x^{2}+8 x+1$
$x^{2}+14 x+35=10 x+35$
17. Find the surface area of a sphere that has a diameter of 12 cm . Express your answer in terms of π. $S A=4 \pi r^{2}=4 \pi 6^{2}=144 \pi \mathrm{~cm}^{2}$
18. A forester, 80 feet from the base of a tree, observes that the angle between the ground and the top of the tree is 60°. Find the height of the tree.

$$
80 \sqrt{3}: 280 \sqrt{3}+5
$$

22. Write the ratio of vowels to consonants in the word MATHEMATICS.
23. If a circle has a radius of 8 inches, what is the circumference rounded to the nearest whole number? (Use $\pi=3.14$) $\quad C=2 \pi(8)=16 \pi$

$$
\begin{aligned}
& =6(3.14) \\
& =50.24 \mathrm{in}
\end{aligned}
$$

24. Use your calculator to determine $\tan 53^{\circ}$ $=1.3270$
25. Inside a semicircular tunnel of diameter 30 feet, a vertical support beam is placed 8 feet from the side of the tunnel. How tall is the beam? (Round to one decimal place) $\frac{8}{x}=\frac{x}{22} \Rightarrow x^{2}=176 \quad x=4 \sqrt{11}=$
26. Find the area of an equilateral triangle with a side of 7 . $781: \sqrt{3}, 2$

27. Solve for x to the nearest degree. $\begin{aligned} \cos x & =\frac{8}{16} \\ x & =\cos ^{-1}\left(\frac{1}{2}\right) \\ & =60^{\circ} \end{aligned}$	36. Given: measure of arc $\mathrm{SQ}=80^{\circ}$, measure of arc $\mathrm{PR}=152^{\circ}$, then $m \angle x=$? (Not drawn to scale) $\frac{1}{2}(152+80)=116^{\circ}$
$\begin{aligned} & \text { 28. Find } m \angle P S Q \\ & \text { if } m \angle P S Q=3 y+4 \\ & \text { and } m \angle P R Q=2 y+16 \\ & 3 y+4=2 y+16 \\ & y=12 \end{aligned} \begin{aligned} & m P S Q=3 y+4 \\ & m(12)+4=40^{\circ} \end{aligned}$	37. If all the angles in the faces of the polyhedron below are right angles, then its surface area is... $\begin{aligned} & 2(12)(8)+2(20)(12)+2(20 \\ & 192+480+32 \\ & =992 \mathrm{in}^{2} \end{aligned}$
29. Find the number of faces, edges and vertices of: $\begin{aligned} & \text { faces }=6 \\ & \text { edges }=12 \\ & \text { varkicer }=8 \end{aligned}$ 30. A segment whose endpoints are on the circle is ? chord	38. The measure of arc ADB is.... $\begin{aligned} & 180^{\circ}+53^{\circ} \\ & =233^{\circ} \end{aligned}$
31. Find the area of the quadrilateral.	39. Find the value of x to the nearest tenth. $\begin{aligned} x^{2} & =9^{2}+6^{2} \\ x & =\sqrt{117} \\ & =3 \sqrt{13} \end{aligned}$
32. Given: measure of $\operatorname{arc} \mathrm{AB}=92^{\circ}$, measure of arc $\mathrm{CD}=28^{\circ}$, then $m \angle D O C$ is?	40. What is x to the nearest hundredth? $\begin{gathered} \sin 48^{\circ}=\frac{x}{60} \\ x=60 \sin 48^{\circ} \\ =44.6 \end{gathered}$
33. What is the segment that goes through center of circle and touches circle circumference twice? diameter 34. Solve for $\mathrm{x}: \quad \frac{5}{x+2}=\frac{2}{x} \quad \begin{aligned} & 5 x=2 x+4 \\ & 3 x=4 \\ & x=4 / 3\end{aligned}$	41. at R Find RS. $(\mathrm{QS}=20)$ $\begin{gathered} (\mathrm{QR}=8) \\ (\mathrm{RS})^{2}+8^{2}=20^{2} \end{gathered}$ $\text { RS }=\sqrt{336}=4 \sqrt{21}$
35. (a) Find the exact total surface area of a cone that has a slant height of 25 in and radius of 6 in. (b) Find the height of the cone. (c) Find the volume of the cone.	42. What's the ratios of the lengths of sides of (a) $30^{\circ}-60^{\circ}-90^{\circ} \Delta$? (b) $45^{\circ}-45^{\circ}-90^{\circ} \Delta$? \square (b) $45^{\circ}-45^{\circ}-90^{1}$

43(A) A circle is circumscribed about a polygon if:

(B) Common internal/ external tangents:
 internal tangents

 44. Draw:(A) a regular polyhedron

\square abe

(B) a non-convex polyhedron
(C) a polygon

45. Give two angles co-terminal with 250° poorible $250^{\circ}+360^{\circ}=610^{\circ} \quad 250^{\circ}-360^{\circ}=-110^{\circ}$
46. Convert 145° to radians and leave answer in terms of $\pi \cdot \frac{145 \pi}{180}=\frac{29 \pi}{36}$
47. A student is trying to work out the height of the music teacher. He is 15 feet away from the teacher and the angle of elevation from his feet to the top of teacher's head is 22°. How tall is the teacher in feet and inches? $\begin{aligned} \tan 22^{\circ}=\frac{x}{15} \quad \begin{aligned} x & =15 \tan 22^{\circ} \\ & =6.06 \approx 6_{f t} \mathrm{lin}\end{aligned}\end{aligned}$
48. In the figure below, an altitude is drawn to the hypotenuse of a right triangle. Which of the

(A) $\Delta F L G \sim \triangle G H L \times$
(B) $\Delta G L H \sim \Delta F G H$
(C) $\Delta F G H \sim \Delta F L G$
(D) $\Delta G L H \sim \Delta F L G$
49. Find the equation of the circle with center $(-3,5)$ and $(2,-4)$ is a point on the circle.
$\begin{array}{ll}(x+3)^{2}+(y-5)^{2} \\ (2+3)^{2}+(4-5)^{2} & =25+81 \quad r^{2}=106 \\ (x+3)^{2}+(y-5)^{2} & =108\end{array}$
50. Given: $\mathrm{PS}=6, \mathrm{SR}=8$, then the value of QS is....

$$
\begin{aligned}
& \frac{x}{6}=\frac{8}{x} \\
& x^{2}=48 \\
& x=\sqrt{48}=4 \sqrt{3}
\end{aligned}
$$

51. Find the value of x.

$$
\begin{aligned}
& \frac{x}{10}=\frac{14}{x} \\
& x^{2}=140 \\
& x=\sqrt{140}=2 \sqrt{35}
\end{aligned}
$$

52. If $a=3, c=4, \beta=40^{\circ}$, then find side b . see end
53. An automobile has 15 -inch diameter wheels. If the wheels revolved four times after the brakes were applied, the stopping distance was approximately... $C=\pi d=\pi(15)=15 \pi$
54. Write down all the ways that 2 triangles can be similar. AA , SAS, SSS
55. Given circle center Q and $m \angle B=72^{\circ}$.

56. Calculate the volume of the cone. Use $\pi=3.14$

57. Find the area of the shaded region.
(Radius $=6 \mathrm{~cm}$ and

central angle $=50^{\circ}$)

58. A field is 150 m by 450 m . A barn 30 m by 41 m is built in the field. How much area is left over? $(150)(450)-(30)(41)=66270 \mathrm{~m}^{2}$
59. Draw the graphs of (a) $y=\cos x$

(b) $y=\sin x$
$-1790^{\circ} 350^{\circ}$
60. Given: In circle O , measure of $\operatorname{arc} \mathrm{BAC}=290^{\circ}$. Find $m \angle A$

$$
m \angle A=35^{\circ}
$$

61. An aquarium in a restaurant is a rectangular prism and measures 2.5 feet by 5 feet by 3 feet. What is the volume of the aquarium?

$$
(2.5)(5)(3)=37.5+t^{2}
$$

62. Assume that $\angle A$ is an acute angle and $\sin \mathrm{A}=0.13$. The $m \angle A=$? 7.5°
63. Find the surface area, in square centimeters, of a right circular cylinder if the radius is 4 cm and the $\begin{aligned} \text { height is } 10 \mathrm{~cm} .5 . A . & =\underset{(\text { bases) }}{2 \pi(4)^{2}}+\underset{(\text { lateral) }}{2 \pi(4)(10)}=112 \pi \mathrm{~cm}^{2}\end{aligned}$
64. Solve for a and b.

65. Write down the definition of similar polygons. All corresponding angles we \cong and sides proportional
66. The sine of $\angle A$ is the ratio:

67. Convert 1.45 radians to degrees. 1.45×180
\approx

83.08°

68. Find the volume of a sphere 6 ft in diameter.

$$
\frac{4}{3} \pi 3^{3}=36 \pi \approx 113.1 \mathrm{ft}^{3}
$$

69. Solve the triangle if $a=5, b=6, C=39 \circ$ [see $\begin{aligned} & \text { send } \\ & \text { end }\end{aligned}$
70. Define concentric circles. have same center
71. $(-3,4)$ is a point on the terminal side of θ. Find the exact value of $\cos \theta . \quad \cos \theta=\frac{-3}{5}$
72. Reflect the triangle in the line

73. Find the area of the region shown by dividing it

74. The pyramid shown has a rectangular base and faces that are isosceles triangles. Find the total surface area. (Not drawn to scale)

6 ft
75. Draw a quadrilateral with:
(a) Exactly one line of symmetry.
(b) Exactly two lines of symmetry.
(c) Exactly four lines of symmetry!

76. Find the exact value of $\cos 150^{\circ}$.
$\cos 150^{\circ}=-\frac{\sqrt{3}}{2}$
77. Solve the following system:
$x=2 y+5$
$x=2 y+5$
$3 x-4 y=-20$

78. Find area of a sector with a radius of $4 \quad 50 . \pi 4$ and $\theta=50^{\circ}$. Leave the answer in terms of $\pi .^{\frac{550}{\circ}}=\frac{20 \pi}{9}$
79. Solve the triangle if $a=5, B=42^{\circ}, C=39^{\circ}$ see end
80. State the transformation of ABC.

81. Find (a) the volume and
(b) the surface area of the triangular prism.

82. Find AE given that $\overline{A B}$ is parallel to $\overline{C D}$

$$
\frac{7}{x}=\frac{x}{15} ; x^{2}=105 \Rightarrow x=\sqrt{105}
$$

85. Find the value of z and the length of JG.
all \cdot outside $=$ all \cdot outside
$(z+13)(13)=(39)(9)$
$z+13=27$

$$
\begin{aligned}
& z+13=14 \\
& z=2+13 \\
& 27
\end{aligned}
$$

86. The point $\mathrm{A}(5,-2)$ is translated onto A^{\prime} by the Vector $\vec{u}=\langle-6,7\rangle$. The coordinates of A^{\prime} are:
$H^{\prime}=(-1,5)$
87. What are the angle of rotation and the order of rotational symmetry for the regular polygon? $360^{\circ}=72^{\circ}$ order 5
88. Given: $\triangle A B C$ is similar to $\triangle D E F$.

89. Find the volume of a regular square based pyramid with base side length of 8 cm and slant height of 5 cm . At end
90. What is the effect on
(a) $\times 4^{3}=\times 64$
(a) the volume and (b) the surface area (b) $\times 4^{2}=\times 16$ of a sphere if the radius is multiplied by 4 ?
91. Find x .

92. Plot the points $\mathrm{A}=(2,-1), \mathrm{B}=(6,-1)$, $\mathrm{C}=(6,-3)$ and $\mathrm{D}=(2,-3)$.

(a) Reflect ABCD in the line $\mathrm{y}=1$.
(b) Rotate $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime} 90^{\circ}$ counterclockwise about the origin.
(c) Translate $\mathrm{A}^{\prime}{ }^{\prime} \mathrm{B}^{\prime}{ }^{\prime} \mathrm{C}^{\prime}{ }^{\prime} \mathrm{D}$ '' along the vector $\langle-5,2\rangle$
93. Find the other leg of a right triangle, given one leg is 18 cm and the hypotenuse is $34 \mathrm{~cm} . x^{2}+18^{2}=34^{2}$
94. Find:
(a) the volume
(b) the surface area
of the composite figure.
(a) $V=\pi 2^{2}(2)+\frac{1}{3} \pi 2^{2}(3)$
$=8 \pi+4 \pi$
$=12 \pi i^{3}$

95. (a) Find the area of a regular octagon with side length 6 m . Round to the nearest tenth.

At end
(b) Find the area of a regular hexagon with side length 10 cm . Round to the nearest tenth.
96. According to a recent survey, 30 out of 40 geometry students like math. What's the ratio of those students that like math to total number of students? like math : botal $=30: 40=3: 4$
97. Perform dilation with a scale factor of 2 given the triangle and the center of dilation P.

98. Triangle ABC is reflected in line $\mathrm{x}=2$ where $A(3,2), B(2,4)$ and $C(0,1)$. Find the coordinates of $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$.

$A^{\prime}=(1,2)$
$B^{\prime}=(2,4)$
$B^{\prime}=(1,2)$
$C^{\prime}=(4,4)$
\#(3) Cone : sont height 25 in; radiur $=6$ in
(a) Sufface Area $=\pi r^{2}+\pi r L$

$$
\text { \#(52) } a=3, c=4, \beta=40^{\circ}
$$

\#(52) $a=3, c=4, \beta=40^{\circ}$
Cosing Rule

$$
b^{2}=a^{2}+c^{2}-2 a c \cos B
$$

$$
\begin{aligned}
& b=a+c-2 a c \cos \\
& b^{2}=3^{2}+4^{2}-2(3)(4) \cos 40^{\circ}
\end{aligned}
$$

$$
b^{2} \approx 6.6
$$ $b=2.57$

$$
b \approx 2.57
$$

$$
\begin{aligned}
& =\pi 6^{2}+\pi(6)(25) \\
& =36 \pi+150 \pi \\
& =186 \pi \mathrm{in}^{2} \\
& \text { (b) } h^{2}+6^{2}=25^{2} \\
& h=\sqrt{589} \\
& \text { (c) } v=\frac{1}{3} \pi 6^{2} \sqrt{589} \\
& =12 \sqrt{589} \pi \mathrm{in}^{3} \\
& \approx 914.9 \mathrm{in}^{3}
\end{aligned}
$$

$c^{2}=a^{2}+b^{2}-2 a b \cos C$
$c^{2}=5^{2}+6^{2}-2(5)(6)$ cor 39°
$=14.37$
$c=3.79$
sine rule
$\frac{\sin A}{5}=\frac{\sin 39^{\circ}}{3.79}$
$A=\sin ^{-1}\left(\frac{5 \sin 39^{\circ}}{3.79}\right)$
$A=56.1^{\circ}$
$\begin{aligned} B & =180^{\circ}-56.1^{\circ}-39^{\circ} \\ & =84.9^{\circ}\end{aligned}$
\#(79) $a=5, B=42^{\circ}, C=39^{\circ}$

$\frac{c}{\sin 39^{\circ}}=\frac{5}{\sin 99^{\circ}}$
$=\frac{5 \sin 39^{\circ}}{\sin 99^{\circ}}$
≈ 3.19
(95)(a) $\quad \frac{360^{\circ}}{8}=45^{\circ}$

