Algebra 1 Sample Problems:

1. Combining fractions (add/subtract, multiply/divide, simplify)

Example 1:

i.
$$1 + \frac{4}{9}$$

ii.
$$\left(\frac{9}{9}\right)1 + \frac{4}{9}$$

iii.
$$\frac{9+4}{9}$$

iv.
$$\frac{13}{9}$$

Example 2:

i.
$$\frac{\frac{1}{12}}{\frac{3}{4}}$$

ii.
$$\frac{1}{12} \cdot \frac{4}{3}$$

$$iii. \qquad \frac{4}{36} = \frac{4}{4x9}$$

iv.
$$\begin{pmatrix} 4 \\ 4 \end{pmatrix} \frac{1}{9}$$

$$v. \frac{1}{9}$$

2. Converting from one linear form to another

Find the equation of the line that passes through (2,3) with a slope of -5

$$i. y - y_1 = m(x - x_1)$$

ii.
$$y-3=-5(x-2)$$

iii.
$$y - 3 = -5x + 10$$

iv.
$$y = -5x + 13$$

v.
$$5x + y = 13$$

Standard Form

Add exponents

3. Multiplying powers with like bases

Given:

i.
$$x^2 \cdot x^{a-2}$$

ii.
$$x^{2+a-2}$$

iii.
$$x^a$$

4. Dividing powers with like bases

Given:

ii. $5^{x-(x+2)}$ Subtract exponents

iii. iv. 5^{x-x-2}

Simplify

Simplify

5. Raising a product or a quotient to a power

i. $(a^2b^3)^5$ Given:

ii. $a^{2.5}b^{3.5}$ iii. $a^{10}b^{15}$ Multiply exponents

Simplify

Factoring trinomials

This example uses a trinomial where the lead coefficient is other than "1". The method employed here is called the "bottoms up" method.

i. $3x^2 + 10x - 8$ Given

ii. $x^2 + 10x - 24$ Multiply the constant by the leading coefficient iii. (x+12)(x-2) Factor as if the leading coefficient were "1"

iv. $(x+\frac{12}{3})(x-\frac{2}{3})$ Divide the constants by the original coefficient

 $(x+4)(x-\frac{2}{3})$ Simplify each fraction.

(x+4)(3x-2)vi. Move any denominator for each binomial into the lead coefficient position. Check the resulting factors by using FOIL.

7. Simplifying complex rational expressions

i.
$$\frac{x-2}{x-2} + \frac{x+2}{x^2-4}$$

ii.
$$\frac{x-2}{x-2} + \frac{x+2}{(x+2)(x-2)}$$

iii.
$$\left(\frac{x+2}{x+2}\right)\frac{x-2}{x-2} + \frac{x+2}{(x+2)(x-2)}$$

iv.
$$\frac{x^2 - 4 + x + 2}{(x+2)(x-2)}$$

v.
$$\frac{x^2 + x - 2}{(x+2)(x-2)}$$

vi.
$$\frac{(x+2)(x-1)}{(x+2)(x-2)}$$

vii.
$$\frac{x-1}{x-2}$$

8. Solving problems involving distance/rate/time

Example: A train leaves Sacramento at a speed of 60 kilometers per hour. Two hours later another train leaves Sacramento on a parallel track at 90 kilometers per hour. At what point will the second train catch up to the first train?

a) Fill in the chart above with the correct information:

	DISTANCE	RATE	TIME
First Train	(the distance equals the distance below) or <i>d</i>	60	x
Second Train	(the distance equals the distance above) or <i>d</i>	90	x-2

- b) Since it is known that d = rt (Distance = Rate x Time), the first train's distance will be equal to d = 60x. The second train's distance will be equal to d = 90(x-2).
- c) d = d because that is the distance where the second train catches the first train.
- d) Logically, if d = d, then substitute 60x and 90(x+2) for those values, or 60x = 90(x-2).
- e) Solve:

i.
$$d = d$$

ii. $60x = 90(x-2)$.
iii. $60x = 90x - 180$
iv. $-30x = -180$
v. $x = 6$

f) The first train will have traveled 6 hours at 60 miles per hour or 360 miles. The second train will have traveled 4 hours at 90 miles per hour or 360 miles.

9. Using the elimination method solve a linear system

Given:

i.
$$2x + 5y = 8$$
$$x - 3y = 2$$

ii.
$$2x + 5y = 8$$

$$2(x-3y) = 2(2)$$
 Multiply 2nd equation by 2

iii.
$$2x + 5y = 8$$

$$2x - 6y = 4$$
Subtract 2nd equation from 1st

$$11y = 4$$

iv.
$$y = \frac{4}{11}$$

Solve for y

Now substitute into either equation to find x. . .

v.
$$2x + 5(\frac{4}{11}) = 8$$

vi.
$$2x + \frac{20}{11} = 8$$

vii.
$$2x\left(\frac{11}{11}\right) + \frac{20}{11} = 8\left(\frac{11}{11}\right)$$
 Common genominator

viii.
$$22x + 20 = 88$$

ix.
$$22x = 68$$

$$x = \frac{68}{22} or \frac{34}{11}$$

Check your answer.

10. Dividing radical expressions

Given:

$$\frac{\sqrt[3]{25a^2b^5}}{\sqrt[3]{5ab}}$$

ii.
$$\sqrt[3]{\frac{25a^2b^5}{5ab}}$$

iii.
$$\sqrt[3]{5a^{2-1}b^{5-1}}$$

iv.
$$\sqrt[3]{5ab^4}$$

$$V. 5^{\frac{1}{3}} a^{\frac{1}{3}} b^{\frac{4}{3}}$$

vi.
$$b\sqrt[3]{5ab}$$

11. Rationalizing denominators

i.
$$\frac{4}{\sqrt{3}+x}$$

ii.
$$\frac{4}{\sqrt{3}+x} \left(\frac{\sqrt{3}-x}{\sqrt{3}-x} \right)$$

iii.
$$\frac{4\sqrt{3}-4x}{3-x\sqrt{3}+x\sqrt{3}-x^2}$$

iv.
$$\frac{4\sqrt{3}-4x}{3-x^2}$$

12. Graphing parabolas

Sketch
$$g(x) = 4x^2 + 8x - 3$$

Change the quadratic equation to the $a(x-h)^2 + k = y$ form.

Part One:

i.
$$g(x) = 4x^2 + 8x - 3$$

Remember g(x) = y

ii.
$$4x^2 + 8x - 3 = 0$$

Make y = 0

iii.
$$4x^2 + 8x = 3$$

Add the constant term to both sides of the equation.

iv.
$$4(x^2 + 2x + ...) = 3$$

Factor out the 4, complete the square.

v.
$$4(x^2 + 2x + 1) = 3 + 4(1)$$

Complete the square and add the right amount to both sides of the equation.

vi.
$$4(x+1)^2 = 7$$

Factor the trinomial and change to $a(x-h)^2 + k = y$ form.

vii.
$$4(x+1)^2 - 7 = 0$$

The a-value is a +4 so the direction of the parabola opens upward. The (h,k) is (-1,-7) so the vertex is in the third quadrant. There will be two x-intercepts.

Part Two:

To find x-intercepts. . .

i.
$$4(x+1)^2 - 7 = 0$$

ii.
$$(x+1)^2 = \frac{7}{4}$$

iii.
$$\sqrt{(x+1)^2} = \frac{\sqrt{7}}{\sqrt{4}}$$

iv.
$$x+1 = \pm \frac{\sqrt{7}}{2}$$

v.
$$x = +0.3$$
 or $x = -2$

To find x-intercepts, make y = 0.

Add +7 to both sides, divide by 4.

To "undo" a square, take the square root.

Remember the square root is plus/minus.

Subtract +1 from each side, estimate $\frac{\sqrt{7}}{2}$ and get the two roots.

To find the y-intercept. . .

i.
$$4(0+1)^2 - 7 = y$$

ii.
$$4-7 = y$$

iii.
$$-3 = y$$

Make x = 0

Simplify

The parabola crosses the y-axis at (0,-3).

Sketch the graph:

